
Driving Databases to the Limit
Measuring Database Performance with DSBENCH

Rajko Thon∗ Mathias Ball†

The Database Driving Range
(leitstern.de/ddr)

June 2016

Abstract

To find means to qualify arbitrary computers regarding their capability to act as a database
server we perform a large number of tests to understand which characteristics of a com-
puter system influence the performance most. We qualify performance by measuring
storage system throughput and by extensively testing the system with a self–developed
TPC–B like performance benchmark program called DSBENCH. Benchmarking produces a
number of characteristic diagrams for a system as well as a single qualifying performance
indicator (DSI) which we demonstrate to be useful to compare system performance easily.

motive: Qualify servers, learn about database performance dependencies on hard– and
software, learn about database behaviour under load.

method: Systematically measure performance characteristics of systems under test
with the help of available reference tools as well as the self–developed database
benchmark tool DSBENCH.

key words: database server, benchmark, DSBENCH , Linux, Windows, PostgreSQL, Fire-
bird, NTFS, EXT3, BTRFS, performance qualification, server optimization

1 Introduction

If you are going to use a relational database management system (RDBMS) for an application
where data tier and logic tier (business logic) resides in the database itself, the question of
database scalability gets more important. What can we effectively expect from a server?
How many concurrent sessions can it bear with? How many transactions per second can it
process while preserving a certain level of responsivity? How will it behave in the long term,
when database size and user count grow? What system equipment should be preferred to
optimize database performance?

We examine the behaviour of isolated relational database servers because we would like to
understand what size of task we can expect from them to perform well for. We try to identify
a single characteristic from tests which expresses this capability well.

Now, databases are tools and as such they can be used in a large number of situations in
completely different ways for purposes of database applications. So there is no easy way to
compare them in a meaningful manner. There is one classic test which soon cross your way
∗amron-rt@leitstern.de
†meb@leitstern.de
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and which is often used to get some impression of a system under test: The TPC–B [Cou94].
Today TPC–B mainly is two things, it is outdated and it is primarily a stress test, not a test
for online transaction processing.

However, it is widely used and quickly implemented and can, despite of its age, still de-
liver interesting results. A specifically nice implementation is pgbench, which is part of the
installation of PostgreSQL. It runs the same sequence of SQL commands over and over, pos-
sibly in multiple concurrent database sessions, and then calculates the average transaction
rate (as transactions per second — tps). By default, pgbench tests a scenario that is loosely
based on TPC–B, involving five SELECT, UPDATE, and INSERT commands per transaction
(see official site at [Gro15]).

One pgbench run only measures the performance of a database at a definite constant size
which can be changed by a parameter that is called scale and describes the total size of the
database. But in order to gain reliable performance information a single run at one scale is
insufficient. You have to create databases at several scales (this means at different sizes) and
measure again transaction rates as a function of scale, i.e. of the database size. Depending
on the available main memory and the database server configuration this function will vary
substantially. To achieve this function several pgbench runs at different scales must be
performed. Similar practical pgbench experience can be found at [Smi09].

Although pgbench delivers reliable performance information about PostgreSQL it has some
limitations that induce us to develop our own database benchmark tool called DSBENCH.

• It is restricted to performance test PostgreSQL only. We also wanted to test at least
Firebird too.

• As explained by [Gro15] pgbench is only loosely based on TPC–B standard [Cou94]. It
especially does not fulfil the data consistency condition.

• As explained above a simple pgbench run is insufficient to give reliable performance
information about a system under test. It delivers only a basic tool to benchmark but
for comparing the performance of systems, an extended tool is required that measures
the whole transaction rate function depending on scale.

• Finally, pgbench is a local only test but we wanted to simulate a real database usage
scenario by including several remote clients that stress the database server at the same
time.

2 Method: DSBENCH

2.1 What is DSBENCH?

DSBENCH is a new cross–platform, cross–database benchmark to assess the capability of a
computer to act as a server for a relational database systems.

DSBENCH uses a "TPC–like" benchmark profile; its model is based on the technical parts of
the TPC–B specification. DSBENCH is, however, NOT in any way certified by or related to the
Transaction Processing Performance Council (TPC) and does not claim to produce results
compatible with TPC–BenchmarkTM B. Other than TPC–B, DSBENCH does not even aim to
determine a cost per performance value for a system to be sold. It rather aims to determine
a meaningful characteristic performance statement for a system you have at hand.

DSBENCH is easy to use. Invoked from the command line and using the default configura-
tion it determines a performance profile as well as a characteristic performance indicator —
the "DSI" — for your system.

DSBENCH can either be used locally on the system under test or it can be used to or-
chestrate a distributed test where a number of remote nodes (machines) access the server
simultaneously from the local network.
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DSBENCH is written in Python 3, currently runs on Linux and Windows and works with
Firebird 2.5.x and PostgreSQL 9.3+ databases. The Python database driver is the sole depen-
dency of DSBENCH on the database product. Specifics of the driver interface are encapsu-
lated in a separate class. This way DSBENCH always behaves exactly the same for different
databases. Thus, differences in the results of tests are due to the capability of the database
product, the Python database driver or due to changes to the configuration parameters of a
test. Additionally, only a few Python libraries1 are required as well as the Python driver for
the database2.

The name DSBENCH is derived from the term Database Stress BENCHmark. DSBENCH

is free software and is published under LGPL v3 license. It is intended for general use.
Feel free to download it from our website at leitstern.de/dsbench to benchmark your own
system. Instructions are available on the website. If you like, you can send your results to
dsbench@leitstern.de. We are excited to know how your system can achieve!

2.2 TPC–B compliance

2.2.1 Why TPC–B?

DSBENCH tries to stick to the TPC–B specification [Cou94] as good as possible. While TPC–B
is considered obsolete today, we think it still provides a very useful test model. A dedicated
database server (software + hardware + configuration) definitely is a complex system. Often
it is difficult to find out which element of a test set–up leads to which characteristics of the
test results and why. Since TPC–B is designed to perform only a few, largely independent
steps per transaction it becomes easier apparent which boundary conditions effect which
features of the result. So a simple model will probably better help to understand the basics
of a relational database management system. Which we like better than just having a black
box.

2.2.2 Concurrency or Performance?

The TPC–B specification stresses that a system under test must strictly comply with the
ACID–requirements [Cou94]. ACID (Atomicity, Consistency, Isolation, Durability) as a set
of properties aim to guarantee that a transaction always is processed reliably. Ideally a
transaction should see an environment as if it were the only transaction currently executed
on the database. During the transaction the state of all data it queries should be unchanged
by anything except the transaction itself. Unfortunately, in practice this can be only achieved
at the expense of performance. Which would mean executing transactions more in sequence
than truly concurrent. But relational databases are about achieving performance while
providing concurrency at the same time. Consequently real life database systems don’t work
that way.

To achieve better concurrency while still retaining performance usually the isolation prop-
erty of the four ACID properties is relaxed. The SQL 92–standard [May92] defines four such
levels: READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ and SERIALIZ-
ABLE.

SERIALIZABLE were the perfect choice to guarantee ACID compliant transactions, but it
is not applicable for the most real transactions because of the performance penalty involved:
it essentially sequentializes transactions.

1Packages: numpy, psutil
2Drivers: psycopg2, fdb or firebirdsql
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READ UNCOMMITTED provides raw performance by pretty much ignoring many measures
which could lead to a consistent view of the data queried during the transaction. Therefore,
this level is only applicable to the few transactions where you either know that nothing can
interfere with what the transaction does or where it does not influence the transactions
result.

This leaves us with READ COMMITTED and REPEATABLE READ. But there is a big gap
between how these both isolation levels are defined by the standard and how — they are
implemented in most relational database products — if at all. This is because the way
the concurrency mechanism is implemented differs substantially between databases. Today
many of the leading database products use a mechanism called Multi Version Concurrency
Control (MVCC). Knowing that claim better don’t expect MVCC to be the same thing if you
switch between database products [Kap15].

The design of a product is usually centered around an approach how to guarantee a specific
transaction behaviour, which again results in a "best practice" of how to work with the prod-
uct. Today many of relational databases were not so much modelled after a well established
standard, but rather invented and defined the way reliable transactions work by themselves.
The SQL 92–standard describes an idealized version of such transaction behaviour.

Eventually, to meet TPC–B’s requirements, you have to choose an appropriate transaction
level for the database product you want to test.

The TPC–B specification explicitly requires, that the system under test "must ensure seri-
alizability of transactions under any arbitrary mix of transactions" [Cou94] and must guar-
antee repeatable reads during a transaction. Of both remaining levels only REPEATABLE
READ guarantees that behaviour. READ COMMITTED, without any further measures, will
already break consistency in step 2 of 5 of the TPC–B transaction, when you read the balance
of the account changed by your update operation from step one. Between these two steps
another transaction could have already updated your record from step one, so that your read
fails to deliver a consistent result.

In this paper we examine two database products: PostgreSQL and Firebird. We came to
consider them for an application since they are both quite capable databases. Both feature
a comprehensive subset of the SQL–standard as well as a powerful procedural language,
which we like. Moreover they are both Open Source and free.

They also provide a practically usable implementation of the transactional isolation level
REPEATABLE READ. Interestingly the MVCC–implementations of both databases seem to
be quite similar by nature. They both implement REPEATABLE READ in a way which ex-
ceeds the definition of REPEATABLE READ as defined by the SQL 92–standard. With the
consequence that phantom reads are prevented.

For Firebird the adequate isolation level is called "Snapshot Isolation/No Wait" and is
the default isolation level of Firebird. For PostgreSQL the default isolation level is "READ
COMMITTED", but REPEATABLE READ can be easily enabled, for instance by changing the
database default appropriately.

So the answer to "concurrency or performance" is: "concurrency and performance" is pos-
sible for a database product which bears the concept at its heart. Of course the performance
of your database application will still very much depend on how you program. And the TPC–
B transaction bears no specific hardships for procedural database programming. But you
have to start somewhere. And with REPEATABLE READ we can provide an environment for
PostgreSQL and Firebird which allows to implement a test under TPC–B–like requirements.

2.3 What does DSBENCH do?

DSBENCH performs a sequence of TPC–B test runs on a database server at scales = 1, 2, 5,
10, 20, 50, 100, 200, 500, 1000, 2000, 5000 and 10000. We use the term scale in the same
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way as the TPC–B specification. A scale of 1 corresponds to a database configuration with
one branch, 10 tellers and 100,000 accounts (see TPC–B specification [Cou94], section 4.2).

For each scale run DSBENCH drops and recreates the database. It then performs 10 test
cycles of a duration of D = 60 s. The sequence of scales, the number of cycles and the de-
manded duration of a cycle mentioned above are standard values of DSBENCH which are used
for most of the tests described in this paper. They can be configured differently if required,
using DSBENCH’s configuration file, by using command line switches or by entering values
on the integrated GUI.

During each test cycle a configurable number of simulated clients access the database and
perform the TPC–B–transaction. The clients are simulated by DSBENCH threads. This means
the database server on the system under test always has to run at least as many threads as
there are clients configured.

If the test runs locally, the system under test also runs an equally high number of Python
threads simulating the concurrent clients which connect to the database.

If the test runs distributed the simulated clients run on a number of nodes on the local
network who are controlled by a DSBENCH master node, which in turn runs on the system
under test.

Successful transactions of simulated clients are committed, counted and their residence
times are recorded, whereas unsuccessful transactions are rolled back. For each cycle DS-
BENCH calculates the TPC–B transaction rate Ti from the number of all successful trans-
actions executed by all simulated clients divided by the demanded duration D of the cycle
i. After completion of all cycles DSBENCH calculates a median from all Ti values which rep-
resents the official transaction rate of the scale. Median is used intentionally to diminish
Ti values which considerably deviate from the others for reasons which can not be tracked
down exactly, e.g. the operation system of the system under test doing some maintenance
work.

In addition, DSBENCH records all measured values (residence times, transaction rates) in
a number of files, creates up to five different diagrams for a graphical representation of the
test results as well as a generalized performance index, the DSBENCH–Index or DSI, who
aims to condense the overall impression of the system under test into a single qualifying
number. Eventually, the entire file output of DSBENCH is compressed into an archive for
later reference.

2.4 A short testing reference

To define DSBENCH test conditions you can change by writing a configuration file or by setting
command line parameters:

• Scales (also denoted scaling factors), i.e. database sizes. It’s a good idea to rise the
scale logarithmically.

• Number of cycles per scale, default is 10. Each cycle gives one cycle averaged transac-
tion rate.

• Duration of one cycle in seconds, default is 60 s.

• Number of remote nodes, default is 0 which means local processing.

• Number of threads spawn by each node to make transactions, default is 0 too. A value of
0 means that transactions are done by the main thread otherwise separate transaction
threads are started.
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• Number of connections (i.e. database sessions) opened by each thread, default is 1.
Transactions are fired in blocking mode and round robin on these connections.

Additionally you can determine, if:

retry Transactions can fail due to transaction isolation level REPEATABLE READ if they
need access to the same table rows as transactions of other nodes or threads. With
this option set to True the transaction with the same parameters is repeated until
it succeeded. The residence time is then measured from the beginning of the first
transaction attempt which failed until end of the transaction attempt which succeeded.

prepare This option set to True creates a prepared statement for transactions. A prepared
statement is a server–side object that can be used to optimize performance. When
prepare is used, the transaction statement is parsed, rewritten, and planned only once.
When an execute command is subsequently issued, the prepared statement need only
be executed. Thus, the parsing, rewriting, and planning stages are only performed
once, instead of every time the statement is executed.

reconnect If this option is True a more realistic scenario is tested by opening and clos-
ing a database connection for each transaction. If this option is used the number of
clients/connections is meaningless. In this case each thread is managing only one
connection.

Consequently:

• The effective number of simultaneously acting transactions is: number of remote nodes
* number of threads per node

• The total number of open connections is: number of remote nodes * number of threads
per node * number of connections per thread

• Note, that for instance PostgreSQL limits the maximum number of connections, and its
easy to come beyond the scope of these limits!

2.5 DSBENCH Output

The next tab. 1 contains a short description of each column of the results table of DSBENCH

which is stored by default in files named results.txt (as a human readable text file and for
plotting using gnuplot) and results.csv (for imports in office software):

The DSBENCH master and stand alone application is also creating a file named results.log
that logs application messages and some load data like: CPU load, IO load. Depending on
the operating system and the Python and psutil versions installed the load parameters can
be different. Please keep in mind, that load data make only sense if the DSBENCH master is
running on the database server.

Besides the table DSBENCH creates up to 5 diagrams in PDF format: results-*.pdf,
asterism * stands for rate (transaction rates), node (transaction rates per remote node), cycle
(transaction rate over time), freq (cumulative frequency distribution) and conf (confidence
interval). Plotting is done by the gnuplot application [gdg15]; DSBENCH is writing scripts
(results.*.plot) as input for gnuplot and invokes gnuplot automatically. If you want you can
adapt the gnuplot scripts to your own needs and recreate the diagrams by invoking gnuplot
with these scripts again. The diagrams are explained in detail in results section 4.1 using a
real life example.
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Table 1: Column legend of the DSBENCH results table.

no. column description
1 scale
2 database size [GB]
3 transaction rate median [tps]
4 transaction rate average [tps]
5 transaction rate standard deviation [tps]
6 transaction rate minimum [tps]
7 transaction rate maximum [tps]
8 number of transactions done
9 number of failed transaction trials

10 total transaction residence time [s]
11 effective duration measured [s]
12 transaction rate multiplicator f
13 transaction rate for 50.0 % confidence level [tps]
14 transaction rate for 68.0 % confidence level [tps]
15 transaction rate for 87.0 % confidence level [tps]
16 transaction rate for 95.0 % confidence level [tps]
17 transaction rate for 99.0 % confidence level [tps]
18 transaction rate for 99.7 % confidence level [tps]
19 populate database duration [s]
20 primary key duration [s]
21 foreign key duration [s]
22 cleanup duration [s]
23 drop database duration [s]

2.6 Mathematics in detail

The next sections contains some mathematics that explains the DSBENCH internals in detail.
You can skip it for simply applying DSBENCH.

s = 1 . . . S scale index
i = 1 . . . I cycle index
n = 1 . . . N node index
j = 1 . . . J thread index per node
c = 1 . . . C connection index per thread
m = 1 . . .Minj transaction index for cycle i, node n and thread j
D demanded duration of a cycle
Xs scale value for index s
Linj effective duration of cycle i at node n and thread j
Minj number of measurements done successfully for cycle i, node n

and thread j
M total number of measurements done successfully
Einj number of measurements failed due to transaction rollbacks for

cycle i, node n and thread j
rinjm residence time of transaction at cycle i, node n, thread j and

transaction number m
Rinj total transaction residence time at cycle i, node n and thread j
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R averaged transaction residence time
T r
inj transaction rate based on total residence time at cycle i, node n

and thread j (tpsR)
T l
inj transaction rate based on effective duration at cycle i, node n

and thread j (tpsE)
T t
inj transaction rate based on demanded duration at cycle i, node n

and thread j (tpsD)
Tin transaction rate based on demanded duration at cycle i at node

n only
Ti transaction rate based on demanded duration at cycle i
T total transaction rate based on demanded duration
T r transaction rate based on the averaged transaction residence

time
f transaction rate multiplier, a factor for scaling
DSI DSBENCH performance index

The total residence time at cycle number i, at node n and for thread number j is the sum
of all measured residence times by node n, in thread j and in cycle i. The number of all these
measurements done successfully is Minj.

Rinj =

Minj∑
m=1

rinjm (1)

Dividing the number of all measurements done successfully in cycle i, by node n and
thread j by the residence time above gives a transaction rate that neglects the transactions
that are aborted due to collisions. This is a rate that a node theoretically can reach if there
where no transaction aborts and no load by the clients.

T r
inj =

Minj

Rinj
(2)

The next rate is built by dividing the number of all measurements done successfully in
cycle i, by node n and thread j by the effective duration of that cycle, node and thread Linj.
This effective duration is measured from the start of the first transaction of that cycle until
finish of lastly counted successful transaction. This time is smaller than the demanded
duration D and expresses the actual duration of a cycle neglecting the last not counted
transaction that finished or failed outside the demanded cycle duration.

T l
inj =

Minj

Linj
(3)

The following rate is related to the demanded duration of a cycle D and expresses the
successfully finished transactions.

T t
inj =

Minj

D
(4)

The total number of all transactions successfully done is the sum of all numbers of trans-
actions done by cycles i, nodes n and threads j.

M =
I∑

i=1

N∑
n=1

J∑
j=1

Minj (5)
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The transaction rate based on demanded duration at cycle i for node n is created by count-
ing all successful transactions done by all threads of a cycle i on node n and dividing this by
the demanded duration D.

Tin =

J∑
j=1

T t
inj =

J∑
j=1

Minj

D
(6)

The transaction rate based on demanded duration at cycle i is build by counting all suc-
cessful transactions done by all nodes and threads of a cycle i and dividing this by the
demanded duration D.

Ti =
N∑

n=1

J∑
j=1

T t
inj =

N∑
n=1

J∑
j=1

Minj

D
(7)

The total transaction rate based on demanded duration is build by dividing the total num-
ber of all transactions successfully done by the number of cycles I times the demanded
duration D.

T =

I∑
i=1

Ti

I
=

I∑
i=1

N∑
n=1

J∑
j=1

Minj

I ×D
=

M

I ×D
(8)

Lets define a transaction rate T r based on the averaged transaction residence time R of all
transactions of cycle i, node n and thread j.

T r =
1

R
=

M

I∑
i=1

N∑
n=1

J∑
j=1

Minj∑
m=1

rinjm

=

I∑
i=1

N∑
n=1

J∑
j=1

Minj

I∑
i=1

N∑
n=1

J∑
j=1

Minj∑
m=1

rinjm

(9)

By balancing this new transaction rate T r with the total transaction rate based on de-
manded duration D:

T =
M

I ×D

!
= f × T r = f × M

I∑
i=1

N∑
n=1

J∑
j=1

Minj∑
m=1

rinjm

(10)

we gain the transaction rate factor f . This factor is used to convert the residence times to
transaction rates that are based on the demanded duration for the confidence level diagram
curves (see sec. 4.1.5).

f =

I∑
i=1

N∑
n=1

J∑
j=1

Minj∑
m=1

rinjm

I ×D
(11)

This is necessary because the residence time of transactions is not measured sequentially
but partially parallel. Therefore, the reciprocal of a single residence time can not be
considered as a transaction rate of the database. In order to convert the acquired resi-
dence times to transaction rates a factor is required that must be recalculated for each scale.
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The DSBENCH performance index (DSI) represents the area beneath the transaction rate
curve presented logarithmically in both dimensions (see sec. 4.1.1). The factor 0.5 simply
adapts the values we gained to lower than 10.

DSI = 0.5

(
S∑

s=2

(lgTs + lgTs−1)× (lgXs − lgXs−1)

2

)
(12)

3 Testing Ground

Initially we just intended to find out which performance we could expect from a brand new
pair of dedicated database servers we had just bought. Soon we realized that some numbers
as a test result alone don’t tell you so much. The logical next step was to extend the tests
to a number of desktop– and mobile computers which we use daily and of which we have
an impression how they normally perform. So the field of systems under test widened and
now included systems providing a broader range of hardware options (CPUs, main memory
and drives) as well as software options (operating systems, file systems, database products,
database drivers). This also opened the chance to examine some dependencies of test results
on different selected elements of the hardware and software stack.

3.1 Systems under Test

For our tests we concentrate on two dedicated servers (nereidum, syrtis), each with a SSD
as a system disk and a RAID5 array of 6 HDDs as a mass storage unit. The servers only
differ in the type of hard drives that is used in the RAID5 array. They both run the Linux
distribution Debian 8 "Jessie".

Then there is one high–end tower PC running Windows 8.1 (starlanes, late 2013) with a
SSD as a system disk and a HDD and a SSD as options for data disks. This one should be
comparable to the servers regarding its specification.

There is a standard desktop PC of 2009 (pavonis) which runs Linux and has different
HDDs for system and data.

And it gets even older: There is one 12 year old desktop PC from about 2004 (varya) which
still runs Windows XP. Despite its age this machine has a quite good CPU (Pentium CPU
2.8 GHz, hyper–threaded) and also HDD (a single drive, 200 GB HDD). This machine gives
us the unique opportunity to compare a system, which despite its age is quite capable, with
more modern system architectures.

Eventually there are three Lenovo business notebooks from different generations (ham-
mer: 2010, jarvis: early 2012, megatron: late 2012). The Lenovo business class is famous
for being extensible as well as capable of running different operating systems. So we use
these as a testing ground to look for OS–specific effects and also for how systems behave
when they use exactly the same drive as a data disk. This is possible because all of these
notebooks feature a bay for hot–swappable drives which are fully qualified SATA slots.

For this comparisons we use — where possible — a 500 GB HDD (HGST) and a 500 GB
SSD (Samsung Evo 840).

Tab. 3 gives an overview over the most important parts of the system specifications of
each system. The RAM speed is measured with memtest86+ on Linux and with Novabench
(novabench.com) on Windows. The averaged HDD speeds and access times are measured
on Windows using HD–Tune (hdtune.com). Corresponding values on Linux come from se-
quential throughput measurements using dd (see also sec. 3.2.1) and from vendor’s product
descriptions.
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3.2 System Stack

To answer the question how components of a system under test influence its overall perfor-
mance we abstract the components into subsystems as follows.

Core Core means CPU, mainboard and main memory, the "fast" components of the com-
puter, responsible for raw data throughput and processing.

Storage backend The mass storage system is the inevitable part which every computer
needs since todays types of main memory don’t provide persistence and you simply
can’t have enough of it to keep all important data you wish to retain. The mass storage
backend consists of mass storage devices (hard drives, solid state disks), storage con-
troller system including cache, ranging from integrated controllers on the mainboard
to separate RAID controllers cards with their own cache, memory, processor and even
operating system.

Operating system The operating system is responsible for making the most out of the un-
derlying hardware stack. It aims for efficient operation of the system through drivers
and the utilization of processing resources, e.g. for multi–threaded processing of data
and data–exchange between core and storage backend.

File system File systems organize the data which can be persisted by the storage backend.
Since there is a considerable gap in performance between storage backend and core,
file systems can have some impact on the overall system performance. They use smart
algorithms to deliver data to the system core and write them back, trying to prevent
bottlenecks as good as they can.

RDBMS Relational Database Management System: the specific type of database management
system examined in this paper. Sometimes we also call this "database product" or
"database server". We are interested to know what an application can deliver using an
RDBMS. We examine PostgreSQL (Versions 9.3, 9.4, 9.5) and Firebird (version 2.5x).

DB–API The DB–API or "Database Application Programming Interface" is used by an applica-
tion to communicate with a database. Both PostgreSQL and Firebird provide a C–API
(to communicate by using the programming language C).

Database driver The application we examine in this paper, DSBENCH, is written in Python.
Python uses drivers to communicate with databases. We use several versions of Python
drivers for PostgreSQL (psycopg2 versions 2.5, 2.6) and Firebird (fdb versions 1.4.x and
firebirdsql versions 0.9.x). All database drivers we use aim to be only thin wrappers
around the DB–API.

Application: DSBENCH Eventually the application, representative for a database application
which could use a database server and which depends on all of the above systems for
performance: DSBENCH.

3.2.1 Storage Devices

As mentioned above we use mechanical hard disk drives (HDD), solid state drives SSD and
RAID5 arrays consisting of 6 single mechanical 2 TB disks. In order to get an impression
about the throughput we made simple reading and writing tests using dd for Linux systems
and HD–Tune for Windows.

The commands applied to measure sequential throughput while creating and reading a
large file of 64 GB using dd were:
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dd if=/dev/zero of=tempfile bs=1M count=65535 conv=fdatasync,notrunc
dd if=tempfile of=/dev/null bs=1M count=65535

Results gained with dd are summarized in the tab. 4. Notes about selected file systems can
be found in sec. 3.2.3.

Table 4: Storage device throughput of different systems using dd.

system file system read write
MB/s MB/s

nereidum RAID5, EXT4 725 664
nereidum RAID5, BTRFS 752 708
nereidum RAID5, BTRFS, chattr +C 755 724
syrtis RAID5, EXT4 633 619
pavonis HDD, EXT4 145 142
jarvis HDD, NTFS 99 101

3.2.2 Operating System

We use the following operatings systems:

• Debian 8 "Jessie", Kernel 3.16 amd64 (syrtis, nereidum)

• KUbuntu 14.10, Kernel 3.16 amd64 (pavonis)

• KUbuntu 15.04, Kernel 3.19 amd64 and x86 (hammer)

• Windows 7 SP1 32 bit (hammer)

• Windows 7 SP1 64 bit (hammer, jarvis)

• Windows XP SP1 (varya)

• Windows 8.1 64 bit (starlanes)

• Windows 10 64 bit (hammer)

3.2.3 File systems

We examine three file system types: EXT4, BTRFS and NTFS.

EXT4 is de facto standard on Linux systems and proven to be rock solid.

BTRFS is a next generation file system with advanced features required for high availability
systems (see Liebel [Lie13]) and data safety (see Salter [Sal14]) among others. It is
available on Linux.

NTFS is an advanced file system and the standard across all variants of Windows starting
with Windows NT up to Windows 10.

File systems can be tuned to some degree. In this paper we use EXT4– and NTFS–partitions
as they are formatted by the OS. Only for BTRFS we examine different configuration options
which include two different leaf sizes: 16 k and 4 k, compressed and uncompressed file
system mode as well as the "copy on write" option (CoW) which can be switched ON/OFF
with the "chattr +C" command for selected files or directories.
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3.3 Database Parameters and Conditions

3.3.1 PostgreSQL Configuration Options

Transaction isolation level We use isolation level REPEATABLE READ for the majority of the
tests. This is necessary to achieve consistency which is required by the TPC–B–model
(see explanation in sec. 2.2). We use READ COMMITTED only for some selected tests to
demonstrate the differences in the results compared to REPEATABLE READ.

For PostgreSQL the default isolation level is READ COMMITTED. We permanently
change it to REPEATABLE READ for the database cluster used for the tests.

shared_buffers The configuration parameter shared_buffers determines how much memory
is dedicated to PostgreSQL to use for caching data. PostgreSQL’s default settings are
low; on todays hardware recommended values are in the range from 25 % to 40 % of
the available RAM. PostgreSQL also relies on the operating system cache, so it’s a
good idea not to make it too big. The PostgreSQL–Wiki [Wik15] notes that on Windows
shared_buffers are not that effective and the useful range is 64 MB to 512 MB.

effective_cache_size The parameter effective_cache_size is used by the PostgreSQL query
planner to estimate if the execution plan will fit into the available RAM. According to the
PostgreSQL–Wiki [Wik15] too small values may result in PostgreSQL not using indexes
the way you would expect. It is recommended to set this parameter from 1/2 to 3/4 of
the available RAM.

work_mem The work_mem parameter can speed up complex sorting operations and allows to
explicitly dedicate memory to such operations. The parameter is of limited value for the
tests we execute for this paper, since the queries used in the TPC–B–transaction or for
generating the test database don’t involve complex joins, but rather have to work with
large single column indexes. Again according to PostgreSQL–Wiki [Wik15], work_mem
is applied to each and every sort by every user. So the amount of memory configured
multiplies with the number of connected users and even with the number of tables
for certain operations like merge–sorts. Bearing this in mind it is recommended to be
economically with this value.

3.3.2 Resulting PostgreSQL Configuration

The tool pgtune can optimize these settings for PostgreSQL automatically based on the idea
of maximizing performance for a given hardware configuration. Therefore we compare test
results obtained with default settings to the optimized settings as recommended by pgtune.
For Windows we use slightly different settings as can be seen in the tab. 5.

Table 5: PostgreSQL config parameters on the Linux–servers and the Windows–machines.

Linux Windows
default pgtune

effective_cache_size 4.0 GB 11.0 GB 4.0 GB
shared_buffers 8.0 MB 3.75 GB 512 MB
work_mem 4.0 MB 96.0 MB 1.0 MB
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3.3.3 Firebird Configuration Options and Parameters

For Firebird there are a few important parameters and boundary conditions that influence
performance.

Server model For historical reasons Firebird provides three server models (Classic, Super-
classic and Superserver) which define the way threading and caching is handled. Clas-
sic spawns a process for each client, while Superclassic and Superserver both use only
one single process and every connected client uses one thread spawned by the process.
With Superclassic each thread has its own cache and the model can provide better
concurrency in multi–processor environments. Superserver uses a shared cache for all
threads and can be efficient in multi–processor environments when handling multiple
databases.

Transaction isolation level For Firebird we use the isolation level "Snapshot Isolation/No
Wait" which is the default when installing Firebird. Snapshot isolation provides an
even deeper level of isolation than REPEATABLE READ from the SQL 92–standard, it
even prevents phantom reads which can happen at REPEATABLE READ (see [Bor04],
p. 524). This isolation mode satisfies the requirements of the TPC–B–model well.

page_size This parameter is defined per database at the creation time of the database. It
describes the size of Firebird cache–page which is mainly responsible for how much
space can be taken up by all indexes on a table.

DefaultDbCachePages firebird.conf explains: "This sets the number of pages from any one
database that can be held in cache at once. If you increase this value, the engine will
allocate more pages to the cache for every database."

FileSystemCacheThreshold firebird.conf explains: "The threshold value that determines
whether Firebird will use file system cache or not. File system caching is used if
database cache size in pages (configured explicitly in database header or via Default-
DbCachePages setting) is less than FileSystemCacheThreshold value."

3.3.4 Resulting Firebird Configuration

For Firebird we use the default server model on install as a test default. Which one this is
depends on the operating system: Superclassic on Linux and Superserver on Windows.

Regarding transaction isolation we use the default Snapshot isolation level only, so no
change is made to the database or the transaction default. The page_size we use is 16 kB
which is the maximum possible page size for Firebird.

We experiment with the DefaultDbCachePages vs. FileSystemCacheThreshold, but mostly
use a FileSystemCacheThreshold = 262144 pages (at 16 kB page size = 4 GB) and a Default-
DbCachePages of 65536 pages (at 16 kB page size this is 1 GB).

3.4 Test Conditions

DSBENCH’s configuration allows for a multitude of options. If not specified otherwise we
always use the following DSBENCH settings:

scales Scale values of 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000 and 10000. This
results in database sizes between about 14 MB and 140 GB.

duration Demanded duration of one cycle: 60 s (default).
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cycles Number of cycles: 10 (default).

confidence levels Confidences levels for residence times at 50.0, 68.0, 87.0, 95.0, 99.0 and
99.7 %3.

clean, drop Cleaning of database between cycles and dropping database after each scale run
is not time measured because it proved to be insignificant.

accurate Depending on the test conditions DSBENCH may collect millions of residence time
measurements. This will result in gigabytes of stored files containing the values and
may lead to memory consumption errors when gnuplot tries to draw the cumulative
frequency diagram. Therefore, in standard configuration, which we use for our tests,
DSBENCH extracts all necessary data from the residence times measured and stores a
substantially reduced amount of residence time data to draw the diagram.

nodes, threads, connections Number of nodes, threads and connections are changed, de-
pending on the requirements of the selected test. The most often used parameter is the
number of threads which simulates the number of concurrent clients on the database.

4 Results

During 12 months we executed more than 550 tests on 9 different systems. More than 7000
test databases were created, benchmarked and destroyed. The total test duration is around
4500 h, something between 1010 and 1011 transaction are processed. As a result, nearly 2500
diagrams are evaluated.

This huge amount of data contains lots of interesting relations. Instead of presenting
DSBENCH output of all tests independently we consider the results within scope of some
selected questions:

1. What can we learn from output data and diagrams of DSBENCH in general?

2. Which differences can be seen between DSBENCH tests on PostgreSQL and pgbench?

3. What can we conclude from times acquired for database and index creation on different
systems? Which limitations do we encounter if rising the database size?

4. How are database products able to handle concurrency by rising the number of DS-
BENCH threads?

5. Are there any other DSBENCH parameters than the number of threads that lead to
performance improvements or drops?

6. How much influence do have database configuration changes recommended in litera-
ture for performance purposes?

7. Can we distinguish PostgreSQL TPC–B test examples done with REPEATABLE READ
and READ COMMITTED?

8. Are there any performance differences when updating the database servers and the
drivers?

9. Which influence has the file system on the Linux servers on the database performance?

10. How is the performance affected if you use different systems with the same storage
backend?

3The confidence levels 68.0, 95.0 and 99.7 % correspond to 1σ, 2σ and 3σ known from gaussian distributions.
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11. How are the test results changed if the client side of the benchmark is outsourced to
remote nodes. Can we enhance the performance further by rising the number of nodes?

4.1 The Basics

A DSBENCH run produces a lot of data which we evaluate in several ways to get a clearer pic-
ture of a database server’s behaviour under stress. DSBENCH’s output consists of a number
diagrams: one main diagram showing a characteristic profile along with the DSI, DSBENCH’s
characteristic performance index of the system under test, and a number of supplement
diagrams which can indicate additional characteristics.

To illustrate the typical behaviour we use a system configuration on nereidum (a Linux
database server) with 5 real client computers accessing a PostgreSQL database from a local
network. Each diagram type is shown for two modes DSBENCH can run in, SELECT and
TPC–B with SELECT referring to test run ?? with DSI = 8.4 and TPC–B to ?? with DSI = 6.5.

4.1.1 Transaction Rate and Time Diagram

The transaction rate and time diagram (see fig. 1) displays the transaction rate median as
a red solid line, the averages and standard deviations as red points with error bars and
the minimum/maximum ranges making up the green filled area for each scale which in turn
corresponds to the respective database size. Please note that the median is different from the
average value of a given set of numbers. While the average is simply summing up all values
and dividing them by their count the median omits single extreme values from a given set
since it is simply the value in the middle of a size ordered set. Therefore the red median line
does not necessarily cross the middle of the error bar (average).

Medians, averages, standard deviations and extreme values are derived from all total trans-
action rates based on demanded duration collected per cycle Ti (see eqn. 7).

The lower x axis represents the scale (also called scaling factor), the upper one the corre-
sponding database size in GB. Some arrows mark sizes like RAM and SWAP or performance
tweaking database configuration parameters. The left y axis reveals the transaction rate per
second. The y axis at right hand side is a logarithmic time scale to show the time required for
populating the database, for creating indexes or for cleaning up and dropping the database.
In the example shown in fig. 1 the cleaning and dropping times are omitted because they are
negligible. Population and index creation times mainly depend linearly on the database size.
The only exception is primary key generation between scales = 100 and 200.

Lets consider first the upper diagram in fig. 1 which represents the results of the SELECT
test. The transaction rate resides at 50,000 tps and is nearly constant from scale = 1 up to
500. Between scale = 500 and 1000 the transaction rate is dropping down. According to
the marks in the diagram this cut–off corresponds nearly to the PostgreSQL configuration
parameter effective_cache_size and to the RAM size of the system under test. After the cut–
off the transaction rate is about 3 orders of magnitude smaller than before. We call the
range of scales smaller than 500 where the transaction rate is high the low scale range. The
range beyond scale = 1000 is denoted as high scale range. In low scale range the database
size is smaller than the system’s RAM, the database may reside in cache entirely. In this
range the performance is mainly determined by the system core: CPU, RAM and mainboard.
In high scale range the database is larger than the system’s available RAM, only parts of
the database may be cached. In this case the performance is mainly determined by the
storage backend. In our example the random reading performance of the RAID5 array is the
dominant limiting factor.

The curve in the lower diagram of fig. 1 representing the results of a TPC–B test has a
different shape. A clear distinction between low and high scale range as seen in the SELECT
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test is missing. Instead we observe an increase of the performance up to scale = 10, a strong
local maximum there and afterwards an exponential decay.

How to explain?
Contrary to SELECT tests where all database reading can be carried out from cache only if

the complete database resides in RAM the TPC–B test also needs IO activity to store commit-
ted changes even if the database is small. This explains the decay of the performance with
rising database size.

The transaction isolation level REPEATABLE READ forces data consistency on database
level by rolling back transactions that try to change data that are changed by other trans-
actions but not committed yet. This leads to failed transactions that are not counted for
performance statistics and therefore the transaction rate drops. On TPC–B tests this is as
more possible as smaller the database i.e. as smaller the scale. This causes the performance
drop toward smaller scales than scale = 10.

4.1.2 Transaction Rate per Node Diagram

The transaction rate per node diagram (see fig. 2) displays the transaction rate medians as
solid lines, the averages as well as minimum and maximum as points with error bars for
each client node that queried the database during the test. Medians, averages and extreme
values come from per node transaction rates based on demanded duration per cycle Tin (see
eqn. 6). The names of the nodes are listed in the legend outside right. The lower x axis
represents the scale, the upper one the corresponding database size in GB. The left y axis
reveals the transaction rate per second. If the test ran locally this diagram is omitted.

Again the upper diagram shows the results for SELECT tests. All transaction rate curves
per node show the same shape as the total transaction rate curve but with values in the
low scale range that can differ up to a factor of 4. At high scale range the rates are nearly
identical for all nodes.

The lower diagram presents the TPC–B test results. The shapes of all curves per node are
comparable to the shape of total transaction rate. In low scale range the maximum values at
scale = 10 differ by a bit more than a factor of 2. In high scale range the rates are the same
for all nodes.

How can we understand the differences between nodes?
We intentionally use very different node platforms: Intel Xeon E3–1230V3 3.3 GHz (syr-

tis), AMD Phenom II x4 955 3214 MHz (pavonis), AMD Phenom II x4 945 3 GHz (meridiani),
Intel Core i3–3220 CPU 3.3 GHz (olympus) and AMD Sempron LE–1100 1908 MHz (alba).
These nodes also have different network connection speeds to the server: 1 Gb/s (syrtis)
and 100 Mb/s (remaining nodes). All these architectural differences may induce different
transaction rates on the same server.

At low transaction rates (at high scale range) the hardware differences of the nodes have
less influence. The most work is done by the server and nearly all transactions are of long
term nature. In this situation the nodes waste most time by waiting for finish of such
transactions. Hence, the transactions are uniformly distributed over nodes. At higher global
transaction rates the time that a node needed to start a new transaction on the server has
an increasing influence to what a node can process. Therefore, faster nodes can start more
transactions than slower ones.

Note that the order of the nodes in the legend and the mapping of their names to point and
line types is different in both test cases. This order is newly assigned by each DSBENCH run.

4.1.3 Transaction Rate by Cycle Diagram

Transaction rates may evolve with time after database creation. The transaction rate by cycle
diagram (see fig. 3) shows the transaction rate Ti based on demanded duration at cycle i (see
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Figure 1: Transaction rate and time diagrams for SELECT (above) and TPC–B (below).
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eqn. 7). This diagram shows one curve for each scale, see legend outside right. The lower x
axis represents the number of the cycle which corresponds to the time. The left y axis shows
the number of transactions per second.

The SELECT test (above) shows nearly straight lines at different levels depending on scale,
hence on database size. The TPC–B test (below) displays more variations. Especially, the
high scales achieve higher transaction rates in the first two cycles.

This diagram is also suitable to recognize short term temporary performance drops due to
system or database maintenance work. But keep in mind, that the time resolution of that
representation is limited to demanded cycle duration.

4.1.4 Cumulative Frequency Diagram

Mean, median, error bars and extreme values of the transaction rate only give limited infor-
mation. These statistical parameters are adequate estimations if the transaction residence
times would show nearly gaussian frequency distribution but they do not. Actually, resi-
dence times may vary by orders of magnitude depending on whether a single transaction
must wait for comprehensive IO operation or can be executed in cache. In order to get
more detailed information DSBENCH stores residence times rinjm for each single transaction.
These residence times are collected for each scale and their inverse cumulative frequency
distribution is determined. There are two reasons why we select this kind of presenta-
tion: Cumulative frequency is simply determined by sorting all residence times per scale and
assigning them equidistant values between 0 and 1 that correspond to a probability. The
inverse form is more suitable to highlight the outliers by using a logarithmic presentation.

The diagram shows one curve for each scale labelled outside right. In the cumulative
frequency diagram (see fig. 4) the x axis shows the transaction residence time in milliseconds.
The y axis gives the probability that the transaction residence time is longer than the value
at the curve. Example from the lower diagram in fig. 4: Follow the arrow that is denoted
with 99.0 %. It crosses the green curve which represents all residence times for scale = 2 at
x = 2 ms. This means: 99 % of all transactions on a database with scale = 2 are faster than
2 ms.

The upper diagram shows the SELECT test results. The curves are grouped into two accu-
mulations. The first accumulation which is more shifted to short residence times are the low
scale range tests. The remaining curves are high scale range measurements that are shifted
to the right to 2 orders of magnitude higher residence times. This means the transactions on
high scale databases consume 100 times as much residence time as transactions on a low
scale databases. A curve in between is scale = 1000 where 50 % of all transactions are still
fast between 0.3 and 0.5 ms and become quickly higher up to 10 ms for 70 % of transactions.
This means, 30 % of transactions are longer than 10 ms.

The lower diagram displaying the TPC–B results reveals a different characteristics: Curves
for scale = 1 to 10 are accumulated at the left end which represents short term transactions.
Between scale = 20 and 500 the residence time distributions gradually change from short
to long term. Nevertheless, most transactions are still fast. Even at scale = 500 95 % of all
transactions are faster than 5 ms. But the small number of long term transactions need up to
10 s which substantially reduces the total transaction rate. The curve at scale = 1000 shows
a similar behaviour as the same curve for SELECT (see diagram above). Beyond scale = 1000
the curves are accumulated at right again, i.e. at the long term end. These residence times
are 2–3 orders of magnitude higher than them at the low scale range until scale = 10.

The cumulative frequency diagram unveils that in the low scale range (up to scale = 500)
most transactions are processed fast, i.e. in cache. If the database server or the file system,
respectively, needs to store cache changes on disk, some transactions block substantially
longer and the overall result is degraded.
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Figure 3: Transaction rate by cycle diagrams for SELECT (above) and TPC–B (below).
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Figure 4: Cumulative frequency diagrams for SELECT (above) and TPC–B (below).
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4.1.5 Confidence Level Diagram

The confidence level diagram (see fig. 5) is derived from the cumulative frequency diagram.
It presents the transaction rate depending on the scale (or database size) which is measured
with a given probability (confidence interval). Each curve represents a definite probability or
confidence interval, see legend outside right. The probabilities listed there are the same as
the arrow marks shown in the cumulative frequency diagram4 (see fig. 4). The lower and the
upper x axes display the scale and the corresponding database sizes as well. The left y axis
shows the transactions per second. Look an example from the lower diagram: The curve
labelled as 95 % shows a transaction rate of y = 500 tps at scale = 50. This means: At a scale
of 50, 95 % of all transactions achieve a transaction rate of 500 tps.

The conversion of residence time to transaction rate is done by means of the transaction
rate factor f (see eqn. 11 and explanation thereby).

Better than the cumulative frequency diagram this diagram helps to understand how some
transactions that need orders of magnitude more time to complete than most others affect
the total transaction rate.

The SELECT test (above) displays an even distribution of the transaction rates over scales.
The transaction rate drops as higher the confidence level, but the fraction of slow transac-
tions with respect to the fast ones is nearly equal for all scales.

In the example diagram below for TPC–B test it is demonstrated that less than 1 % of
transactions are responsible for the strong decay of the transaction rates between scale = 10
and 500 as seen in fig. 1. These few transactions need so much time that they substantially
reduce the total transaction rate. On the other hand, fast transactions have a strong cut–
off at scale = 500 to 1000 where the system under test goes from RAM determined to disk
determined scale range. This also demonstrates that even TPC–B tests are strongly different
in low and high scale range but detailed statistics that consider frequency distributions is
required to realise.

4These confidence levels can be configured.
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Figure 5: Confidence level diagrams for SELECT (above) and TPC–B (below).
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4.2 Comparing pgbench and DSBENCH

Contrary to DSBENCH pgbench is measuring at only one scale per pass. Several passes are
required to create and test databases of different size. In order to compare pgbench results
with our DSBENCH output we apply a simple Python script that reproduces the same test
sequence including cycles and scales as DSBENCH.

The fig. 6 compares pgbench and DSBENCH transaction rates for SELECT obtained on nerei-
dum at identical conditions using 1 thread and 1 connection.
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Figure 6: Transaction rates for PostgreSQL SELECT measured with DSBENCH (??, DSI = 7.1)
and pgbench.

• In low scale range DSBENCH accomplished just 60 % of SELECT transactions that pg-
bench can process. The high scale results are more comparable, pgbench is somewhat
dominant. This can be understood because pgbench uses optimized C API access while
DSBENCH is Python scripting and uses a driver between database API and user software.

• The shape of both transaction rate functions is very similar.

• The cut–off gradient of pgbench seems to be somewhat smaller.

The transaction rates of TPC–B tests done with pgbench and DSBENCH are compared in
fig. 7. They are also obtained on nereidum at identical conditions using 1 thread and 1
connection.

• Contrary to SELECT: At TPC–B tests DSBENCH outperforms pgbench! In low scale range
DSBENCH is about 20 % faster. Even in high scale range this tendency is visible.

• The shape of both transaction rate functions is very similar.

• Only in the cut–off range pgbench can process somewhat more transactions.
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Figure 7: Transaction rates for PostgreSQL TPC–B test with DSBENCH (??, DSI = 5.8) and
pgbench.

• DSBENCH executes transactions as PSQL procedures, pgbench sends native SQL re-
quests to the database which are processed sequentially. At SELECT a transaction
consists of only one SQL command, at TPC–B there are 5. For each SQL query pgbench
need to communicate to the server, DSBENCH requires only one execution call per trans-
action for both modes. Hence, DSBENCH has less communication overhead in case of
TPC–B. This is the reason, why DSBENCH can finalize more TPC–B transactions than
pgbench.

Clients (or connections) and threads are treated differently by pgbench and DSBENCH.
The pgbench tool is using asynchronous techniques to handle several connections by one
thread at the same time. DSBENCH is using blocked execute calls. Hence, it can handle
several connections simultaneously in different threads only. The number of connections
per thread in DSBENCH is simply duplicating the number of open database sessions. They
will be handled in sequence by one thread not simultaneously.

In transaction isolation level REPEATABLE READ pgbench can not process transactions
via several connections. Each thread that encountered a collision is aborted immediately. At
low scale this happens immediately after start. Therefore, TPC–B results of DSBENCH with
several threads can not be compared to pgbench with several connections.

The SELECT tests do not encounter any collisions, it is possible to use more connections
even at REPEATABLE READ. We finished some pgbench runs on nereidum using several
connections and found transaction rates up to 104,000 tps at 8 connections in low scale
range (at scale = 10). The CPU is fully utilized. With DSBENCH we got at maximum 35,000 tps
at 4 threads but with CPU load not more than 50 % even at more threads (see still coming
sec. 4.4.1). If you scale this transaction rate to maximum CPU utilization there is still a lack
of about 35 % to get the pgbench result. This may be explained by the load that is generated
by the DSBENCH program itself (including database drivers, Python interpreter).
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4.3 Database Creation

Creating databases for higher scales can become quite time consuming. We use a stored
procedure written in the procedural language of the respective database to efficiently set up
the test database at each scale corresponding to the TPC–B requirements. For each new scale
the database is dropped and recreated. Then the database is populated and in subsequent
steps primary (PK) and foreign keys (FK) are created, each of them always for an entire table
at once5. Still the time for setting up a test database for higher scale = 1000 to 10000 can
take a considerable amount of time.

Tab. 6 summarizes the times needed for database population (pop), key creation (PK and
FK) and in total as well as corresponding proportions at different platforms.

Table 6: Database initialization times at different systems.

system/DB/OS pop PK FK total pop PK FK link
min min min min % % %

scale = 10000 → 1 billion rows
starlanes/FB2.53/Win81 49.9 17.9 41.6 109.3 46 16 38 ??
starlanes/PG9.35/Win81 109.0 36.1 13.6 158.7 69 23 9 ??
megatron/PG9.35/Win7 203.4 79.0 22.9 305.4 67 26 8 ??
nereidum/FB2.53/Deb8 61.2 16.1 45.4 122.7 50 13 37 ??
nereidum/PG9.41/Deb8 73.1 19.2 4.6 96.9 75 20 5 ??
syrtis/FB2.53/Deb8 60.6 16.1 44.5 121.2 50 13 37 ??
syrtis/PG9.41/Deb8 73.6 17.8 3.4 94.8 78 19 4 ??

scale = 1000 → 100 million rows
starlanes/FB2.53/Win81 5.0 1.2 3.7 9.9 50 12 37 ??
starlanes/PG9.35/Win81 10.9 2.5 0.3 13.8 80 18 2 ??
megatron/PG9.35/Win7 20.2 5.1 0.6 25.9 78 20 2 ??
nereidum/FB2.53/Deb8 5.7 1.7 4.1 11.5 49 15 36 ??
nereidum/PG9.41/Deb8 7.3 1.7 0.3 9.4 78 18 3 ??
syrtis/FB2.53/Deb8 5.3 1.7 4.1 11.2 48 15 37 ??
syrtis/PG9.41/Deb8 7.3 1.6 0.3 9.2 79 18 3 ??
pavonis/FB2.52/Ubu1410 5.5 2.4 6.9 15.8 41 15 44 ??
pavonis/PG9.40/Ubu1410 20.5 7.4 2.3 30.3 68 24 8 ??
varya/PG9.43/WinXP 48.1 13.4 4.4 65.9 73 20 7 ??
hammer/FB2.53/Win7-32 12.2 3.0 13.1 28.3 43 11 46 ??
hammer/PG9.35/Win7-32 22.8 6.8 2.2 31.8 72 22 7 ??
hammer/FB2.53/Ubu1504 12.1 3.1 12.4 27.6 44 11 45 ??
hammer/PG9.44/Ubu1504 28.1 7.4 2.5 38.0 74 19 7 ??
hammer/PG9.45/Ubu1504-32 20.9 6.8 2.1 29.8 70 23 7 ??
hammer/PG9.35/Win10 24.4 7.2 2.2 33.8 72 21 6 ??

• On Firebird database population is substantially faster than on PostgreSQL.

• The effective writing speed of Firebird while INSERT for systems syrtis and nereidum
that need 60 min for 93 GB6 at scale = 10000 in total is 26.4 MB/s.

5Creating of PK and FK alongside the population using INSERT takes too long.
6This estimate comes from scale * (total numbers of branches, tellers and accounts) * Bytes per row

= 10000 * (1 + 10 + 100000) * 100.
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• Proportion of PK creation is similar in both RDBMS on both operating systems.

• FK creation however is much cheaper in PostgreSQL.

• The total time for database setting up is comparable for both RDBMS. It depends on
the system which RDBMS is faster.

• The proportions of population, PK and FK of both RDBMS do not differ much on both
operating systems.

Some note about scale = 10000:
The population of the test database at scale = 10000 needs 10 min only with pgbench in-
stead of more than 70 min with DSBENCH on the Linux servers. However, pgbench applies
the COPY statement instead INSERT to fill the accounts table, which is much faster but
non SQL standard. This prevents a useful comparison of creation times between pgbench
and DSBENCH. The pgbench key generation after population needs about 21 min, which is
comparable to what we observed with DSBENCH.

On Firebird the index generation is already problematic at scale = 10000. There must be
enough space to store temporary files. If necessary open the firebird.conf configuration and
change the TempDirectories option by adding more folders (see the documentation in the
configuration file).

Test databases beyond scale = 10000:
On PostgreSQL the population of a database with scale = 50000 failed with the error message:

psycopg2.OperationalError: ERROR:
cannot have more than 2^32-2 commands in a transaction

The database is populated within a PSQL procedure, i.e. within a single transaction. This
transaction is aborted because the total number of INSERT statements exceeds the 32 bit
integer limit. This is expected beyond about scale = 40000 where the number of rows exceeds
4 billion. To check this we successfully created a database at scale = 30000. This limita-
tion can only be worked around by populating a bigger database with several procedure calls.

At first, Firebird failed during index generation of a database at scale = 50000 with the
following error message:

fdb.fbcore.DatabaseError: (’Error while commiting transaction:\n
- SQLCODE: -901\n
- sort error\n
- No free space found in temporary directories\n
- operating system directive write failed\n
- Success’, -901, 335544675)

As mentioned above the disk space for temporary files (in our case on Linux servers about
85 GB) is not enough to create indexes. After extending the TempDirectories option in fire-
bird.conf again the database is created successfully.

At scale = 50000 an account table of 5 billion rows is stored, the size of the database file is
647 GB.

However, we observed an other problem: Counting the number of rows of accounts table
by SELECT COUNT(1) FROM TPCB_ACCOUNT; resulted in 705,032,704. This number
corresponds to the same bit sequence as 5 billion if omitting the highest bit (bit no. 33).
Obviously, the counted number of rows which requires a 64 bit integer is handled as 32 bit
integer only.
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4.4 Variation of the Number of Threads

DSBENCH can simulate several database clients by using threads. Most of our measurements
are carried out under same conditions but using 1, 2, 4, 8, 16 and 64 threads. We want
to see how the database performance is changing by rising the number of concurrent clients.

4.4.1 PostgreSQL, SELECT Testing, Linux Server

In this section discussing fig. 8 we investigate the transaction rate functions of local Post-
greSQL SELECT tests on both Linux servers (nereidum and syrtis) using different numbers
of threads. The figure displays both, linear and logarithmic, representations to be able to
distinguish low and high scale transaction rates as well.

• In the low scale range between scale = 5 and 500 the transaction rates are nearly con-
stant.

• Between scale = 1 and 5 (database size smaller than 100 MB) the 4 threads test shows
a significant decay by about 1/8. It is also visible at higher but less at lower thread
counts. In this example the range where this feature is active is limited to the same
memory size as the work_mem parameter, but we don’t belief that there is a causal con-
nection because a test example on another system does not show the same correlation
(see sec. ??).

• In low scale range up to scale = 500 the transaction rate increases nearly linearly up to
4 threads. The rates at higher thread counts are about 20 % smaller than at maximum.

• CPU loads are: 12–13 % (1 thread), 20–50 % (4 threads) and 50–56 % (64 threads).
Only half of possible CPU power is indeed occupied even on high thread numbers. As
mentioned in previous sec. 4.2 pgbench achieves about 104,000 tps at scale = 10 using
8 connections, the CPU is fully utilized.

• Let’s discuss the 4 threads example where the transaction rate is at maximum: The
CPU load indicates that only 4 of 8 cores are utilized. PostgreSQL creates a process
for each connection, i.e. 4 processes. DSBENCH creates 4 worker threads. This means,
one DSBENCH thread and one PostgreSQL process share one core. This is expected
behaviour because DSBENCH threads are waiting until the database process finished its
transaction request.

• The performance decreases orders of magnitude at cut–off between scale = 500 and
1000. This corresponds to the memory sizes where effective_cache_size parameter and
RAM size are found.

• At high scale range beyond scale = 1000 the performance increases with the number of
threads up to the testing maximum of 64 (see logarithmic representation of fig. 8).

• The IO read activity in low scale range is 0 or close to. At scale = 1000 the read_time
value jumps from 0 to more than 200 s. This means, the database is too big to reside
in cache completely. More and more requests must wait for reading from the storage
backend.

• Both systems: syrtis and nereidum are identical except the manufacturer of the hard
disks, see sec. 3.1. Using DSBENCH we collect similar transaction rate functions and
DSI which proved the stability of our tool for database benchmarking.
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Figure 8: PostgreSQL local transaction rate for SELECT on nereidum and syrtis using 1 (??,
??), 2 (??, ??), 4 (??, ??), 8 (??, ??), 16 (??, ??) and 64 (??, ??) threads.
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4.4.2 PostgreSQL, TPC–B Testing, Linux Server

Next we consider local PostgreSQL TPC–B tests on the same Linux platforms under same
conditions and thread counts as the SELECT tests mentioned before. Transaction rate func-
tions are presented linearly and logarithmically in fig. 9.

• As observed for SELECT measurements the high scale performance enhances with ris-
ing number of threads. However, the transaction rates in low scale range are rising up
to 8 threads. Beyond that thread count the performance is clearly retrogressive.

• The CPU loads vary between 12–19 % for 1 thread and 25–82 % for 16 threads. Hence,
the CPU cores are better utilized than by SELECT tests but there are still some reserves.

• Using 8 threads the transaction rate function has a strong local maximum of 14,000 tps
at scale = 10.

• The strong decline of transaction rates towards scale = 1 is caused by collisions and
transaction aborts due to transaction isolation level REPEATABLE READ as described
in sec. 4.1.1.

• The cut–off as observed for SELECT measurements is not clearly visible in the rate
diagram. The logarithmic representation only points to this feature between scale = 500
and 1000, especially the test using 1 thread only.

• The transaction rate functions of the tests using 1 and 2 threads reveal a plateau up to
scale = 10 indicating a limitation by the performance of 1 and 2 CPU cores. Obviously,
the storage backend is fast enough to save the transaction results produced by 1 and
2 cores so that the cores only have minor idle times. We can call this system well
balanced.

The transaction rate function shows different local maximums depending on the num-
ber of threads. In the next fig. 10 we want to investigate the location of the maximum by
measurements carried out with higher resolution between scale = 1 and 100.

• The transaction rate plateaus at 1 thread between scale = 1 and 10 and for 2 threads
between scale = 2 and 10 visible in fig. 9 are confirmed.

• The maximum of the transaction rate function is located at rising scale if increasing the
number of threads.

In order to see the cut–off region in these tests as well as explained in sec. 4.1.5 the confi-
dence level diagram of one of the above mentioned tests is given in the next fig. 11.

• Contrary to the transaction rate diagram in fig. 9 the confidence level diagram clearly
discloses the cut–off region between scale = 500 and 1000.

• At least 95 % of all transactions are fast and the rate is collapsing after scale becomes
higher than 500. At databases smaller than scale = 500 the transaction rate already
drops for a small part of measurements only (1 % and less). This means, the very most
transactions are running fast up to scale = 500 and become long term beyond that size.
Nevertheless, the few long term transactions before scale = 500 potentially affect the
global transaction rate.
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Figure 9: PostgreSQL local transaction rate for TPC–B on nereidum and syrtis using 1 (??,
??), 2 (??, ??), 4 (??, ??), 8 (??, ??), 16 (??, ??) and 64 (??, ??) threads.

33



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1  10  100

 0.1  1
tr

a
n
sa

ct
io

n
 r

a
te

 [
tp

s]

scaling factor

database size [GB]

syrtis: 1

2

4

8

16

64

Figure 10: PostgreSQL local transaction rate for TPC–B on syrtis using 1 (??), 2 (??), 4 (??),
8 (??), 16 (??) and 64 (??) threads at enhanced scale resolution.

 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000  10000

 0.1  1  10  100

T
P
C

-B
 [

tp
s]

scaling factor

database size [GB]

 w
or

k_
m

em

 s
h
ar

ed
_b

u
ff

er

eff
ec

ti
ve

_c
ac

h
e_

si
ze

 

R
A

M
 

R
A

M
 +

 S
W

A
P 

50.0%

68.0%

87.0%

95.0%

99.0%

99.7%

Figure 11: Confidence level diagram for 8 thread test on nereidum (??).
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4.4.3 Firebird, SELECT Testing, Linux Server

In this section we want to propound Firebird SELECT test results and compare it to what we
found on PostgreSQL. First, see the fig. 12 containing the transaction rate functions of both
Linux servers measured with 1, 2, 4, 8, 16 and 64 threads.
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Figure 12: Firebird local transaction rate for SELECT on nereidum and syrtis using 1 (??,
??), 2 (??, ??), 4 (??, ??), 8 (??, ??), 16 (??, ??) and 64 (??, ??) threads.

• Increasing the number of threads from 1 to 2 rises the transaction rate in the low scale
range up to scale = 500 by 35–40 % only. Increasing the thread count further do not
enhance the performance. Hence, Firebird is not scaling the performance with number
of CPU cores.

• The transaction rate of Firebird is substantially smaller than that of PostgreSQL even
without parallel processing. Maximum transaction rates at one thread are 2500 tps
only for Firebird compared to 14,000 tps for PostgreSQL.

• The cut–off region is visible between scale = 500 and 1000, as observed for PostgreSQL.

• In the high scale range there is a significant increase of the transaction rate with the
number of threads as also observed for PostgreSQL.

• The transaction rate values at scale = 10000 are comparable to the results acquired with
PostgreSQL. This indicates that the SELECT performance of both databases is mainly
limited by the storage backend not by the RDBMS.

Let’s look at the following tab. 7: It displays transaction rate average and some load read-
outs for scale = 5 as example for comparable results observed between scale = 1 and 500.
CPU loads are given for low scale range at scale = 5 and its maximum.
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Table 7: Comparing CPU load and write loads of Firebird SELECT tests.

threads CPU rate write link
% tps GB

1 12–11 2478 4.5 ??
2 22–15 3677 6.7 ??
4 27–32 3476 6.4 ??
8 28–55 3380 6.2 ??
16 28–73 3432 6.3 ??
64 32–97 3328 6.1 ??

• Firebird generates more CPU load than PostgreSQL: 32–97 % for 64 threads depending
on scale. High scale databases need more CPU power, maximum is found at cut–off.

• Tests at low scale utilize 2 cores at maximum even if we have much more threads.

• As observed for PostgreSQL the IO read activity is 0 or close to in the low scale range
and jumps suddenly at scale = 1000 (not visible in the table).

• SELECT testing generates lots of write load on disk of about 32 kB per transaction
(divide write value by transaction rate). Is it possible that the Firebird Python driver is
squandering performance due to writing the database even on SELECT testing only?

• In order to check and to suppress the writing activity on the database we mount the
file system that hosts the database file read only. Unfortunately, this fails because the
driver always opens the database file for reading and writing.

4.4.4 Firebird, TPC–B Testing, Linux Server

At last, we consider the Firebird TPC–B test results acquired on both Linux servers. The
transaction rate functions are presented in fig. 13 for several thread counts.

• The performance at low scale is increasing up to 8 threads, i.e. 8 cores. But the
transaction rates are substantially smaller than on PostgreSQL.

• As observed on PostgreSQL there is a plateau in the transaction rate functions of 1 and
2 thread tests.

• The 2 thread test on syrtis is affected by maintenance work. It demonstrates that
sometimes it is helpful to repeat a test.

• Beyond 8 threads the performance drop is stronger on Firebird than on PostgreSQL.
From 16 to 64 threads the DSI is reduced by -0.5 for Firebird and less than -0.3 for
PostgreSQL (see fig 9). Obviously, Firebird is less efficient to handle a lot of cuncurrent
clients.

• The scaling of the TPC–B performance at 1, 2 and 4 threads indicates that the SELECT
performance is saturated. We’ll investigate this in more detail in sec. 4.8.2.

• At scale = 10000 we also observe an increase of the transaction rates by rising the num-
ber of threads up to 64. At large databases higher thread counts become useful to
improve the performance.

36



 0

 500

 1000

 1500

 2000

 2500

 1  10  100  1000  10000

 0.1  1  10  100
tr

a
n
sa

ct
io

n
 r

a
te

 [
tp

s]

scaling factor

database size [GB]

Fi
le

S
y
st

e
m

C
a
ch

e
T
h
re

sh
o
ld

 

D
e
fa

u
lt

D
b
C

a
ch

e
P
a
g
e
s 

R
A

M
 

R
A

M
 +

 S
W

A
P
 

nereidum: syrtis:

1 (5.1)

2 (5.5)

4 (5.6)

8 (5.7)

16 (5.7)

64 (5.2)

(5.0)

(5.2)

(5.5)

(5.6)

(5.5)

(5.0)

Figure 13: Firebird local transaction rate for TPC–B on nereidum and syrtis using 1 (??,
??), 2 (??, ??), 4 (??, ??), 8 (??, ??), 16 (??, ??) and 64 (??, ??) threads.

See following tab. 8: It displays transaction rate average and some load readouts for
scale = 10. CPU loads are given for low scale range at scale = 10 and its maximum at high
scale range.

• CPU is utilized half only at 8 threads. PostgreSQL is able to use somewhat more.

• There are much more data written than for SELECT only tests where about 32 kB per
transaction (2 database pages) are written (as followed from tab. 7).

• The more threads are connected the more data are written per transaction. This may
be the reason for the strong performance decrease at 64 threads.

Table 8: Comparing CPU load and write loads of Firebird TPC–B tests.

threads CPU rate write link
% tps GB kB/tr

1 10–12 970 8.1 146 ??
2 20–21 1690 14.2 147 ??
4 31–31 2069 18.3 155 ??
8 40–54 2211 21.8 172 ??
16 43–71 1909 20.0 183 ??
64 20–80 417 9.3 390 ??
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4.4.5 SELECT Testing at high scale, Linux Server

Lets have a more detailed look at high scale performance for SELECT to compare PostgreSQL
and Firebird. In both cases we observed very similar increase of transaction rates with rising
number of threads, see sec. 4.4.3. The fig. 14 opposes the transaction rates at scale = 10000
for system nereidum on EXT4 for both RDBMS.
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Figure 14: High scale transaction performance depending on number of threads, a compar-
ison of PostgreSQL (??) and Firebird (??) on nereidum.

• At low thread numbers both RDBMS display very similar transaction throughput. Ob-
viously, the performance of the storage backends, a RAID5 in this case, is the dominant
limiting factor.

• Surprisingly, starting at 16 threads and beyond Firebird can handle up to 30 % more
transactions than PostgreSQL.

• As denoted in tab. 7 the CPU load of Firebird tests with 64 threads reaches up to 97 %.
At scale = 10000 the CPU load is still 94 %, but PostgreSQL only uses 55 % .

• Although Firebird is generating more write content than PostgreSQL the writing times
acquired shows a 10 times higher writing time for PostgreSQL compared to Firebird.
This may cause more often IO waits and CPU idle situations which decreases the total
transaction rate.
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4.4.6 PostgreSQL, SELECT Testing, Windows Desktop

In the following sections we select the results of the Windows 7 laptop system jarvis in
order to have at least one different architecture. In the first section we investigate again the
PostgreSQL SELECT tests, fig. 15 presents the transaction rate functions for 1, 4, 16 and 64
threads. Measurements at 2 and 8 threads are omitted.
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Figure 15: PostgreSQL local transaction rate for SELECT on jarvis using 1 (??), 4 (??), 16
(??) and 64 (??) threads.

• The cut–off is at the same place between scale = 500 and 1000 as observed on the
servers.

• In the low scale range the transaction rate is increasing up to 4 threads, afterwards it
decreases. Note, that jarvis has 4 cores (compared to 8 on the servers) and 16 GB RAM
(same as the servers).

• CPU loads are: 2–27 % for 1 thread, 3–98 % for 4 threads and 4–94 % for 64 threads.
The CPU load values are high in low scale range and small in high scale range. Contrary
to the Linux servers the Windows laptop can drive the database to the CPU limit.

• CPU loads in high scale range are much smaller than observed on the Linux servers.
However, the server is able to process more transactions (80 tps) than the laptop (15 tps)
even if using one thread only.

• The transaction rate is also increasing with rising thread count.

• Between scale = 1 and 5 (database size smaller than 100 MB) the 4 threads test shows
a similar decay from 18,000 to 14,000 tps as on the Linux servers. This indicates a
reason located in the RDBMS.
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4.4.7 PostgreSQL, TPC–B Testing, Windows Desktop

Next, let’s look at the results acquired for PostgreSQL TPC–B tests which are displayed in
fig. 16.
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Figure 16: PostgreSQL local transaction rate for TPC–B on jarvis using 1 (??), 4 (??), 16 (??)
and 64 (??) threads.

• For the low thread count tests there is no plateau as observed on the Linux servers in
fig, 9. We think that a single CPU core could process more transactions if the storage
backend would be able to finish write requests fast enough.

• We also miss an increase of the maximum value with rising the number of threads at
least up to the number of CPU cores which is 4. Again, this is probably caused by the
slow storage backend (missing hardware cache there) that limits the maximum possible
transaction rate.

• But the shift of the transaction rate maximum with the number of threads is significant.

• The CPU load decreases at 1 thread from 37 % at scale = 1 to about 2 % at scale = 10000.
The fraction of the operating system at scale = 1 is nearly 17 %. This means, at scale = 1
one PostgreSQL process just utilizes one core. At scale = 2 the total load is 25 % i.e.
PostgreSQL can not fully utilize one core anymore.

• The maximum CPU load is always observed at scale = 1. It is 66 % at 4 threads, 82 % at
16 threads and 76 % at 64 threads. Rising the database size will decrease the CPU load
down to 2–4 %. The CPU is more and more forced to wait for IO requests.

• Unfortunately, the package psutil can not collect IO load information on Windows.
Hence, we are unable to compare the usage of the storage system with the Linux servers.
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4.4.8 Firebird, SELECT Testing, Windows Desktop

Fig. 17 shows the transaction rate functions for Firebird SELECT tests on jarvis using the
same thread counts as for the PostgreSQL tests.
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Figure 17: Firebird local transaction rate for SELECT on jarvis using 1 (??), 4 (??), 16 (??)
and 64 (??) threads.

• In the low scale range the transaction rate is doubled if the thread count is set from 1
to 4. The server did not achieve that. But note, that we used a newer Firebird Python
driver version firebirdsql 0.9.12 which is probably not comparable to results acquired
on the servers that used firebirdsql 0.9.5. The topic of different database drivers is
investigated in detail in sec. 4.8.2.

• If we rise the thread count from 4 to 16 we enhance the transaction rate from 1400 tps
to 1600 tps again. The DSI is increased by +0.1.

• No further enhancements at 64 threads.

• The cut–off is located at scale = 500 to 1000 as observed on the servers. Remember,
jarvis and the servers have the same RAM size of 16 GB.

• The CPU load is 20 % for 1 thread, 41–45 % for 4, 16 und 64 threads. The transaction
rate decline at 64 threads at scale = 5 is characterized by higher CPU load at "user". We
assume the system was busy with some other work at this time.

• The increase of transaction rate at scale = 10000 with rising number of threads is visible
here too, but less significant. Results of 1 and 4 threads are nearly equal.

• Because psutil on Windows is unable to acquire IO loads we observed the write load
of the Firebird server process at SELECT testing in the Windows task manager. We
found about 40 MB/s at a transaction rate of 1350 tps. This gives nearly 30 kB per
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transaction, a very similar value as observed on the Linux servers. Hence, the write
activity on SELECT tests is platform independent.

4.4.9 Firebird, TPC–B Testing, Windows Desktop

Finally, let’s analyse the transaction rate functions of Firebird TPC–B tests on jarvis in fig. 18.
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Figure 18: Firebird local transaction rate for TPC–B on jarvis using 1 (??), 4 (??), 16 (??)
and 64 (??) threads.

• Previously noted, that we need to change the driver from firebirdsql 0.9.12 to FDB
1.4.11 because the first one is not able to count the transaction aborts due to collisions.

• Striking resemblance with PostgreSQL TPC–B measurements: No plateau, monotonic
decreasing on one threads, increasing drop at left side with rising thread counts and
missing transaction rate increase in middle scale range. We assume again, the storage
backend is limiting and compromising parallel processing because it forces the CPU to
wait for IO write requests.

• In the high scale range only the 64 threads test achieves higher transaction rates.

• A slight cut–off is visible between scale = 500 and 1000.

• The CPU load is below 25 % in general. There is no situation where at least one core is
fully utilized. Most loads are even smaller than 13 %, at 4 threads largest by tendency.
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4.5 Variation of other DSBENCH Parameters

This section gives an overview about the influence of the number of connections per thread
and of the options "retry", "prepare" and "reconnect" (for explanation of these options see
sec. 2.4). We dispense to show transaction rate diagrams and present the DSBENCH perfor-
mance index (DSI) in tab. 9.

Table 9: DSI for DSBENCH parameter variations using 4 local threads. For column descrip-
tion see tab. ??: c — number of connections; p — prepare; w — retry; x — reconnect

test c p w x DSI link
PostgreSQL

SELECT 1 – – – 8.0 ??
SELECT 4 – – – 7.9 ??
SELECT 16 – – – 7.9 ??
SELECT 1 X – – 8.0 ??
SELECT 1 – – X 5.2 ??
TPC–B 1 – – – 6.4 ??
TPC–B 4 – – – 6.3 ??
TPC–B 16 – – – 6.3 ??
TPC–B 1 X – – 6.4 ??
TPC–B 1 – – X 4.8 ??
TPC–B 1 – X – 6.4 ??

Firebird
SELECT 1 – – – 6.5 ??
SELECT 4 – – – 6.6 ??
SELECT 16 – – – 6.5 ??
SELECT 1 X – – 6.8 ??
SELECT 1 – – X 2.9 ??
TPC–B 1 – – – 5.6 ??
TPC–B 4 – – – – failed
TPC–B 16 – – – – failed
TPC–B 1 X – – 5.7 ??
TPC–B 1 – – X 2.9 ??
TPC–B 1 – X – 5.6 ??

• Several connections per thread lead to decreasing PostgreSQL SELECT transaction rate
by about 10 % and a DSI drop of -0.1. This is probably caused by the fact that Post-
greSQL opens a new process for each connection.

• The PostgreSQL TPC–B tests also show a DSI drop of -0.1 for several connections but
the differences of the transaction rates are smaller and less significant.

• The "retry" option for SELECT is omitted, because the SELECT transaction never pro-
duces collision errors.

• The "prepare" option enhances the PostgreSQL SELECT performance by about 3 % at
low scale. High scale databases do not benefit from "prepare". The low scale enhance-
ment is too small to be visible in the DSI.

• For TPC–B tests the option "prepare" does not make any sense. If you make transactions
using PSQL procedures the "prepare" option does not contribute to performance.
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• The "reconnect" option decreases the transaction rate by 2 orders of magnitude.

• Changes by "retry" option for TPC–B are not significant.

• Contrary to PostgreSQL Firebird does not show significant changes due to a variation of
the number of connections per thread. Why? Probably because Firebird Superclassic
server, which is used here, only spawns a single process for all connections.

• Our Firebird TPC–B tests reproducible failed at 4 threads and more than 1 connection
per thread. Some cycles passed through well then at least one thread hang perma-
nently. Until end of year 2015 we could not solve this problem using driver updates.

• Firebird SELECT transaction rate enhancements by option "prepare" are 25–30 % at
low scale. The DSI is growing by +0.3. However, TPC–B does not benefit from "prepare"
option.

• The tests with option "reconnect" also reproducible failed with earlier drivers. After up-
date to driver FDB 1.4.11 the TPC–B test with option "reconnect" finished successfully.

• In both cases, SELECT and TPC–B, the option "reconnect" is substantially slower. The
transaction rates are independent on scale at 30 tps, the DSI is 2.9 in both cases. The
transaction rate is limited by the speed a Firebird client can connect and disconnect
the database.

Although "retry" do not have any impact on the total transaction rate we expect significant
residence time differences at lowest scales because there are the most collisions that forces
the "retry" mode to repeat the same transaction until success. In this case the residence
time is acquired from the start of first transaction trial that failed until any repetition is
finished successfully. Such residence time differences are visible in the cumulative frequency
diagrams as seen in fig. 19. We compare the standard and the "retry" mode test results for
PostgreSQL using one connection only.

• Residence times at scale = 1 are mostly below 1 ms in standard test but reach 100 ms
in "retry" mode at confidence level 99.9 %. This means, 0.1 % of transactions need to be
repeated so often that they last in total 100 times as long as normally.

• The "retry" curve at scale = 2 is strongly shifted to the left with respect to scale = 1, i.e.
to lower residence times, but "retry" and standard tests are still very different.

• Starting at scale = 5 and beyond the cumulative frequency distributions of both tests
give very similar shapes. The test used 4 threads, i.e. beyond scale = 4 the number of
collisions is expected to tend towards zero.
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Figure 19: Cumulative frequency presentations for PostgreSQL TPC–B on nereidum using 4
threads without ?? (above) and with "retry" switched on ?? (below).
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4.6 Comparing Transaction Isolation Levels for PostgreSQL

This section gives an example how the transaction isolation levels affects the test results.
We do not expect any influence to SELECT tests hence we limit our presentation to TPC–B
tests on two different systems.

The fig. 20 compares TPC–B tests using 16 threads on PostgreSQL with transaction iso-
lation levels REPEATABLE READ and READ COMMITTED on the systems megatron and
nereidum which both have 16 GB RAM.
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Figure 20: Transaction rates of PostgreSQL TPC–B tests with transaction isolation levels RE-
PEATABLE READ and READ COMMITTED on megatron (??, ??) and on nereidum
(??, ??).

• There is a substantial difference on nereidum in low scale range up to scale = 20. READ
COMMITTED is able to finish more transactions there due to lack of collisions which
are induced by REPEATABLE READ transaction isolation.

• Nevertheless, transaction rate is also reduced in that range if database is using READ
COMMITTED. Both isolation levels show a transaction rate maximum at scale = 10.

• Beyond scale = 20 differences on nereidum can be neglected.

• The tendency of higher transaction rates in very low scale range is also visible on mega-
tron.

• Relative transaction rate variations on megatron are higher compared to nereidum.
Hence, most of differences due to transaction isolation levels are covered by random
effects.

• DSI differences are significant on nereidum but negligible on megatron.
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In order to understand the transaction rate drop towards lower scale observed at READ
COMMITTED we compare the cumulative frequency distributions of both tests on nereidum
at scale = 1 and 200 in fig. 21.
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Figure 21: Cumulative frequencies at scale = 1 and 200 of PostgreSQL TPC–B tests on nerei-
dum with transaction isolation levels REPEATABLE READ (??) and READ COM-
MITTED (??).

• Residence times of READ COMMITTED transactions at scale = 1 are up to an order of
magnitude higher than times measured for REPEATABLE READ. Look at arrow that
marks the confidence level 99 %: READ COMMITTED transactions need up to 10 ms
whereas REPEATABLE READ transactions are already finished after 1 ms.

• In READ COMMITTED mode transactions are never aborted. Nevertheless, parallel
transactions interfere each other and need to wait for lock releases. This results in
more time consumption which can be observed in the diagram.

• REPEATABLE READ transactions are aborted in case of collision. If DSBENCH mode
"retry" switched off these transactions are wasted. Hence, residence times are only
acquired for successful transactions which are fast because they are not disturbed by
any other.

• Similar results we obtain for REPEATABLE READ if "retry" is switched on, see fig. 19 in
sec. 4.5.

• At scale = 200 both frequency distributions are nearly identical.

• Hence, READ COMMITTED transaction isolation level only outperforms REPEATABLE
READ in case of strong transaction interference. If you can reduce such collisions by
design, REPEATABLE READ will not reduce the performance.
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4.7 Variation of RDBMS Configuration

In order to tweak their performance database systems offer some configuration parameters.
For more details see literature, for instance [EH13], [Fro12] and [Wik15] for PostgreSQL as
well as [Bor13a], [Bor13b] and [Bor13c] for Firebird.

The possibilities to change database configuration that aim at enhancing the performance
are too extensive to cover them all. We investigate configuration changes that are recom-
mended for performance optimization in literature. We avoid to carry out large parameter
studies.

4.7.1 PostgreSQL

As noted in sec. 3.3 we focused our tests on PostgreSQL on two different configurations:
tuned using the tool pgtune and original configuration as installed. Transaction rate func-
tions on syrtis are given in fig. 22 (SELECT) and 23 (TPC–B).
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Figure 22: Transaction rates of PostgreSQL SELECT with tuned (??) and original (??)
database parameters, see tab. 5.

• The influence of database configuration changes using pgtune to PostgreSQL SELECT
is small. The transaction rates in the low scale region and in the high scale region
beyond scale = 2000 are nearly the same.

• The only difference is visible in the cut–off region at scale = 1000. At this point the
original configuration results in a higher transaction rate, high enough to enhance the
DSI by +0.1.

• This behaviour in the cut–off region is investigated in more detail in sec. 4.7.2.
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Figure 23: Transaction rates of PostgreSQL TPC–B with tuned (??) and original (??)
database parameters, see tab. 5.

• Contrary to SELECT the TPC–B transaction rates are substantially enhanced by opti-
mizing the database configuration with pgtune.

• Most enhancements are visible in the low scale range from scale = 2 to 500. The trans-
action rates are up to 4 times higher if optimized.

• At scale = 1000 we see the same behaviour as on SELECT shown in fig. 22, i.e. the
transaction rate is higher for the non–optimized case. Let’s call this "anomaly".

• At high scale range beyond scale = 1000 the transaction rates of both cases are identical.

• In spite of the anomaly and missing impact on SELECT tests we recommend to apply
pgtune as a first step to set performance sensitive configuration parameters adapted
to the system. DSBENCH uses simple transaction patterns only, more sophisticated
database operations need much more RAM to operate and are expected to benefit much
even from that optimization.
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4.7.2 Cut–off Details for PostgreSQL

The transaction rate functions at default configuration using default scale setup of DSBENCH

(see sec.,4.7.1) show an "anomaly" at scale = 1000. In order to get more insights we run
additional SELECT tests in the cut–off region with higher resolution of scale. Fig. 24 displays
the transaction rate and the confidence level diagrams for the tuned configuration.

• Even on high scale resolution the falling edge is very steep: The transaction rate drops
an order of magnitude within scale = 625 and 750 which corresponds to database sizes
9.9 GB and 11.0 GB.

• Look at the cyan curve in the lower diagram which represents the transaction rate func-
tion for confidence level 99 %: This function drops by 2 orders of magnitude at the same
place as the cut–off. This means, 1 % of transactions lasts 100 times longer than be-
fore. Each of that transaction waste the same time as 100 short term transactions, but
for the global transaction rate only 1 transaction instead of 100 can be counted. This
substantially reduces the global transaction rate and explains the cut–off behaviour.

• Transaction rate functions at definite confidence levels also show falling edges. These
edges are shifted to higher database sizes as lower the confidence level. The curve
representing 50 % confidence level has its falling edge at RAM size. This means, at the
global cut–off location a few transactions go from short to long term. With increasing
database size the frequency of long term transactions is rising too.

• You can see here, that the frequency of SELECT transactions that can be processed
from cache only is decreasing with increasing database size. Before global cut–off the
confidence level curves are nearly constant. Afterwards they also falls down one after
the other. This demonstrates that before global cut–off the whole database resides in
file system cache. As you can see, the selected effective_cache_size is well placed in the
vicinity of the cut–off in the tuned configuration case.

We made the same SELECT test run at the original PostgreSQL configuration as installed
(see tab. 5). Results are shown in fig. 25.

• The shape of the transaction rate function and the confidence level curves is similar to
results of the optimized configuration.

• In the non optimized case effective_cache_size, which is not visible because it is located
outside the displayed scale range, is clearly not well placed.

• From the transaction rate diagram you can realize why we have an "anomaly": The cut–
off comes between scale = 850 and 925 which corresponds to database sizes 12.4 GB
and 13.5 GB. This means, the cut–off is shifted to the right in original configuration
case, this leads to higher transaction rates at scale = 1000 as observed in the standard
rate diagrams.

• In original configuration the database system is using less memory for its own pur-
poses due to smaller shared_buffers parameter. This leaves more memory to the file
system cache. From our observation that the cut–off is located at smaller memory sizes
on higher shared_buffers configurations we conclude that PostgreSQL is not applying
shared_buffers memory for SELECT transactions but the file system cache.
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Figure 24: Transaction rate and time diagram (above) and confidence level diagram (be-
low) for PostgreSQL SELECT with tuned database parameters and high resolution
scale raster in the cut–off range (??).
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Figure 25: Transaction rate and time diagram (above) and confidence level diagram (below)
for PostgreSQL SELECT with original database parameters and high resolution
scale raster in the cut–off range (??).
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We investigate the same SELECT test runs on the desktop system pavonis too. There we
get similar results as on syrtis. Hence, we restrict our presentation to the most important re-
sults: DSI (using the default DSBENCH scales), high resolved scale and database size location
of cut–off, configuration parameters effective_cache_size and shared_buffers (see tab. 10).

Table 10: DSI and cut–off on pavonis for tuned and original PostgreSQL parameters.

DSI cut–off effective_cache_size shared_buffers links
scale GB GB GB

pgtune 6.4 340 4.97 5.5 1.875 ??, ??
original 6.5 400 5.85 4.0 0.125 ??, ??

• Due to optimizing with pgtune the cut–off is shifted from scale = 400 to scale = 340. We
also observed the same DSI drop as on syrtis by -0.1 after configuration change by
pgtune which is caused by a higher shared_buffers setting.

• The effective_cache_size setting is better if optimized.

• We also run TPC–B tests on optimized and original configuration and found: Optimiza-
tion leads to a DSI increase by +0.1. In low scale range the transaction rates are up to
25 % higher (see appendix ?? and ??).

4.7.3 Firebird

As noted in sec. 3.3 we concentrate our tests on Firebird to the parameters DefaultDbCache-
Pages and FileSystemCacheThreshold. Results are compared in fig. 26.

• Both tests, SELECT and TPC–B, yield fundamental higher performance if FileSystem-
CacheThreshold is bigger than DefaultDbCachePages. According to the documentation
in the firebird.conf file, the caching is done by the operating system’s file system in this
case.

• In SELECT case the upper corner of the cut–off is shifted from 0.4 GB to 8 GB and the
DSI is enhanced by +0.8. This means, the overall performance is enhanced by more
than a factor of 6.

• The maximum transaction rate of TPC–B tests at scale = 10 is doubled, the DSI is en-
hanced by +0.5. At high scale range the differences become smaller.

• Variations of the parameters FileSystemCacheThreshold and DefaultDbCachePages
without overtaking each other do not have significant impact on the performance, trans-
action rate functions and DSI remain nearly constant.

• From these results we clearly recommend: From performance point of view Firebird
should delegate caching to the operating system, i.e. set FileSystemCacheThreshold
bigger than DefaultDbCachePages.
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Figure 26: Transaction rates of Firebird SELECT above (??, ??, ??, ??) and TPC–B below
(??, ??, ??) on syrtis with different pairs of parameters DefaultDbCachePages
and FileSystemCacheThreshold.
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4.8 Variation of Database and Driver Version

This section investigates the results received by different versions of database software and
their Python drivers.

4.8.1 PostgreSQL Version Differences

The major part of our measurements on Linux servers we intentionally carried out at con-
stant PostgreSQL version 9.4.1. We even avoided system security updates in order to keep
the system stack constant. For our last measurements we updated the server nereidum
several times. The differences we realised are presented in fig. 27. All these TPC–B measure-
ments are done at constant database configurations and with 16 threads.
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Figure 27: Transaction rates of TPC–B on nereidum of PostgreSQL version 9.4.1 (??), 9.4.4
(??) and 9.4.5 (??, ??, ??, ??, ??).

• The transaction rate differences are small but significant (see DSI also).

• The maximum at scale = 10 is enhanced by about 15 % in versions equal or later than
9.4.4 compared to 9.4.1.

• Version 9.4.4 clearly wins with DSI = 6.7 instead of ≤6.5. At this version the high scale
transaction rates are enhanced by almost 50 %. Even in the next version 9.4.5 high
scale rates are smaller.

• While running the test at 9.4.4 we realise a particularity: The 16 threads finish their
cycles at different times depending on the residence time of the last transaction that
is started within the demanded cycle duration. The difference between the times at
which the first and the last thread is finished is smaller than 5 s in the versions 9.4.1
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and 9.4.5. In version 9.4.4, however, we observe differences of at least 8 s up to 105 s.
Sometimes the 60 s cycles need twice and triple as much time.

• The cumulative frequency diagrams (not presented) do not show conspicuous differ-
ences that explain the behaviour described above. The cycles are blocked at their fin-
ishes for some reason, but this is not caused by higher transaction residence times.

• The IO load parameters iowait and idle are distinctive higher at high scale range for
9.4.4, CPU load is somewhat lower. Anyway, the transaction rates are higher. The IO
loads are captured twice per cycle at beginning and end. Most values including both
mentioned above are calculated as differences. Hence, the higher values are presum-
ably caused by long delay between finish of the first and last worker thread. For this
special case it would be better to capture IO load after finish of the first thread.

• Let’s speculate: There was an unwanted side effect after optimisation implemented
between versions 9.4.1 and 9.4.4, which was resolved in 9.4.5 again. But this correction
also unmade a part of optimisation. Is it possible that closing a database session by
one thread has bad influence to other still open sessions?

• The last measurement on version 9.4.5 we repeated several times in order to assess
typical differences under same conditions. Between these measurements the server was
sometimes switched off. Although the transaction rate functions show slight differences
the DSI proved to be constant.
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4.8.2 Influence of Firebird Driver

As mentioned in sec. 4.5 we tried different Firebird Python drivers in order to find solutions
for some bugs we encounter during our tests. This section opposes the results acquired with
different drivers in fig. 28 (SELECT) and fig. 29 (TPC–B).

• Both drivers, firebirdsql and FDB, have the same code core. The firebirdsql version
0.9.5 corresponds about to FDB version 1.4.1. First, we decided to apply firebirdsql
0.9.5 because we encountered less problems there.

• In the newer version FDB 1.4.7 the SELECT scales up to 4 threads instead up to 2
threads only. CPU cores are better utilised and are more comparable to the same test
results on PostgreSQL SELECT (see sec. 4.4.1). Using more threads than 4 do not
further enhance the performance (graphical presentation omitted).

• SELECT tests on FDB 1.4.7 already show higher performance at 2 threads. The DSI
grows from 6.3 to 6.5.

• The TPC–B results using drivers firebirdsql 0.9.5 and FDB 1.4.7 are identical on DSI
and the transaction rate functions.

The next tab. 11 compares the SELECT tests using 1 thread only but different drivers.

Table 11: Transaction rate, write load of Firebird SELECT at scale = 5 for different Python
drivers.

driver DSI rate write link
tps GB kB/tr

firebirdsql 0.9.5 6.0 2410 4.41 32 ??
FDB 1.4.7 6.0 2400 4.40 32 ??
FDB 1.4.11 6.0 2479 4.55 32 ??

• The transaction rate functions and the DSI of all these measurements are identical.
Hence, the driver version does not affect the SELECT results if only one thread is used.

• The IO write load at SELECT is about 32 kB per transaction in all cases. The same
result is mentioned in sec. 4.4.3. This behaviour does not change by driver updates.
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Figure 28: Transaction rates of Firebird SELECT on syrtis with firebirdsql 0.9.5 (??, ??, ??)
and FDB 1.4.7 (??, ??, ??). See also fig. 12.
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Figure 29: Transaction rates of Firebird TPC–B on syrtis with firebirdsql 0.9.5 (??, ??) and
FDB 1.4.7 (??, ??). See also fig. 13.
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4.9 Influence of File Systems

Under Linux we investigate two file systems, EXT4 and BTRFS, how suitable they are for
hosting databases. The next sections especially present results on BTRFS compared to
EXT4. We also test different BTRFS configurations: with or without CoW, with or without
compression and different leaf sizes.

4.9.1 PostgreSQL, SELECT Testing

Let’s first have a look at PostgreSQL SELECT tests. In fig. 30 you see transaction rate func-
tions of different file systems: EXT4, BTRFS with leaf size 16 k labelled as "BTRFS" only, with
chattr +C (CoW off) and compression, BTRFS with leaf size 4 k labelled as "BTRFS, 4k" all on
RAID5 and EXT4 and BTRFS 16 k on single disk labelled with "HDD".
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Figure 30: Transaction rate of PostgreSQL SELECT on nereidum, 4 threads on different file
systems (order according to legend: ??, ??, ??, ??, ??, ??, ??).

• The SELECT performance is independent on any file system related aspects in low scale
range up to scale = 500. Remind, the low scale range is determined by CPU and RAM
load only. File systems do not play any role there.

• The cut–off is located between scale = 500 and 1000 for all file systems. The transaction
rate comes down from 40000 tps to mostly lower than 1000 tps.

• In the high scale range beyond scale = 1000, where performance is determined by IO,
you can see smooth declines.

• At highest scale = 10000 all tests based on the RAID5 array deliver very similar trans-
action rates. This means, read only performance of PostgreSQL is nearly independent
on the file system.
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• In high scale range starting at scale = 1000 the tests on single disk deliver transaction
rates lowered by a factor of 2–3 compared to RAID5. This is also visible as DSI drop by
-0.3.

• To check the read performance independently we also made some throughput tests us-
ing command dd. We measured 160 MB/s for single disk and 725 MB/s for RAID5 (see
tab. 4). But be aware that reading performance of large databases is more determined
by storage access times than by sequential throughput.

• BTRFS with compression gives some performance enhancements after cut–off up to
scale = 5000 that is also verifiable by a DSI increase of +0.1.

• Compression does not influence the performance at low scale. This means, additional
CPU load that is required to decompress the file system content is insignificant to the
CPU load generated by the database and the test suite. Evidence also comes from CPU
load registration. In low scale range before scale = 500 we have loads of 48–52 % in both
cases.

• The performance enhancements by compression between scale = 1000 and 5000 can be
explained by caching: Due to compression more database content may be kept in RAM.

4.9.2 PostgreSQL, TPC–B Testing

Next we consider PostgreSQL TPC–B tests. Fig. 31 presents the transaction rate functions of
different file systems: EXT4, BTRFS with leaf size 16 k labelled as "BTRFS" only, with chattr
+C (CoW off) and compression, BTRFS with leaf size 4 k labelled as "BTRFS, 4k" all on RAID5
and EXT4 and BTRFS 16 k on single disk labelled with "HDD".
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Figure 31: Transaction rate of PostgreSQL TPC–B on nereidum, 4 threads on different file
systems (order according to legend: ??, ??, ??, ??, ??, ??, ??).

60



• The peak transaction rate at scale = 10 on EXT4 file system is nearly a factor of 3 higher
than on BTRFS.

• At larger databases, beyond scale = 200, transaction rates on BTRFS become better than
on EXT4.

• Nevertheless, DSI is clearly favouring EXT4 with 6.4 against 6.0 on BTRFS.

• Switching CoW off by using chattr +C which can be applied per file or directory, slightly
decreases the transaction rate at low scale and nearly a factor of 2 on high scale.

• Active compression on BTRFS lowers the TPC–B transaction rates on all scales.

• Using a BTRFS leaf size of 4 k (sector size is 4 k in all cases) gives significant transaction
rate enhancements in low scale range up to scale = 100. Afterwards it is similar to 16 k
leaf size. DSI is enhanced by +0.1 on 4 k leafs.

• On EXT4 the test on a single disk shows similar performance as RAID5 for the low
scale range up to 500 which behaves similar to SELECT tests. Beyond scale = 1000 the
transaction rates degrades substantially. This is investigated in more detail in sec. 4.10.

• On single disk BTRFS decreases the low scale performance another factor 2–3 compared
to BTRFS on RAID5. The transaction rate on database sizes beyond scale = 500 is
comparable to EXT4.

4.9.3 Differences of EXT4 and BTRFS in Detail

Let’s look cumulative frequency distributions at scale = 5 and 10000 in fig. 32 to understand
the substantial different transaction rates of EXT4 and BTRFS.
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Figure 32: Cumulative frequencies of PostgreSQL TPC–B on nereidum, 4 threads at scale = 5
and scale = 10000 for EXT4 (??) and BTRFS (??).
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• The lower performance on BTRFS compared to EXT4 on low scale is also visible in the
cumulative frequency distribution at scale = 5. The BTRFS distribution (thin green line)
is shifted compared to the EXT4 distribution (thin red line) to the right, i.e. to higher
residence times by a factor of 2–3. This shift can be seen up to confidence levels of
99 %.

• At higher confidence levels BTRFS requires much longer residence times than EXT4.
For instance at 99.9 % the transaction residence time on BTRFS is 2 orders of magni-
tude larger than on EXT4. This means, 0.1 % of transactions last 2 ms on EXT4 but
200 ms on BTRFS. Comparable transaction times we first see on EXT4 at 99.9999 %
confidence level, this means for 1 of 1,000,000 transactions.

• At scale = 10000 (thick lines) the differences of the transaction residence time distri-
butions between both file systems are much smaller. The fastest 50 % of transaction
residence times are nearly the same for both file systems. From this confidence level
until 99 % EXT4 is somewhat faster. Beyond 99 % BTRFS becomes substantially faster,
this means the slowest 1 % of transactions need more time on EXT4 systems.

We find that low scale transactions need 2–3 times more time on BTRFS compared to
EXT4 which also explains the reduced transaction rates on BTRFS. In order to understand
this fact, the next tab. 12 compares some load parameters for scale = 5 and scale = 10000 for
some 4 thread runs presented in fig. 31. It displays transaction rate, written bytes and bytes
written per transaction.

Table 12: Transaction rates, CPU and write loads on nereidum for some file systems
configurations.

file system rate CPU iowait write link
tps % s GB kB/tr

scale = 5
EXT4 9624 42 7.6 4.57 8.3 ??

BTRFS 2804 20 28.4 16.91 105 ??
BTRFS chattr +C 2383 19 33.7 7.48 55 ??

BTRFS 4k 3793 24 24.4 9.71 45 ??
scale = 10000

EXT4 169 43 201 0.36 37 ??
BTRFS 160 35 161 2.21 229 ??

BTRFS chattr +C 92 19 179 0.84 160 ??
BTRFS 4k 186 38 175 1.23 116 ??

• For scale = 5 the write load per transaction on BTRFS is 12 times as high as on EXT4,
the waiting for IO is 4 times higher.

• On heavier IO loads at scale = 10000 BTRFS becomes better: The write load per transac-
tion on BTRFS is still 6 times higher but the waiting for IO becomes somewhat smaller.

• Why BTRFS generates 6–12 times higher write load? In order to check the influence
of CoW we added load data of the chattr +C example run. Although this example
substantially reduces the number of written bytes (reduction by a factor of 2) it does
not enhance the transaction rate.

• Reducing the leaf size of BTRFS from 16 k to 4 k also reduces the write load per trans-
action, in both cases at scale = 5 and 10000 by a factor of 2.
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• We attempt to explain: BTRFS manages leafs like atoms. Each time a database row is
written a complete leaf must be stored, i.e copied on disk. The leaf size is much bigger
than single database row content. The proportion of overall written database content to
leaf size is rising by increasing the number of concurrent database sessions. This also
explains why smaller leafs reduce the write load.

• The much higher IO load on BTRFS on the RAID5 array at low scale is also witnessed
by the LED activity on the disk carriers.

As mentioned above BTRFS tends toward better performance on high scales and on high
thread counts. The next fig. 33 investigates this in more detail. It presents the transac-
tion rates depending on the number of threads for many runs on different file systems at
scale = 10000.
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Figure 33: Transaction rate depending on number of threads at scale = 10000 for different
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BTRFS on single disk (??, ??, ??, ??, ??, ??); EXT4 on single disk (??, ??, ??,
??, ??, ??); BTRFS compressed (??, ??, ??, ??, ??, ??).

• Compared to EXT4 BTRFS becomes better with rising number of threads. At 64 threads
the transaction rate is nearly doubled.

• On single hard disks, however, BTRFS has no advantage.

• Again, BTRFS at 4 k leaf sizes is somewhat better.

• Compression and chattr +C (individual CoW off) decrease the high scale performance.
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4.9.4 Firebird, SELECT Testing

Next we discuss the Firebird SELECT tests. Fig. 34 shows transaction rates of different file
systems: EXT4, BTRFS with leaf size 16 k labelled as "BTRFS" only, with chattr +C (CoW off)
and compression, BTRFS with leaf size 4 k labelled as "BTRFS, 4k" all on RAID5 and EXT4
and BTRFS 16 k on single disk labelled with "HDD".
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Figure 34: Transaction rate of Firebird SELECT on nereidum, 4 threads on different file
systems (order according to legend: ??, ??, ??, ??, ??, ??, ??).

• Both EXT4 tests having the same DSI = 6.0 display constant and equal transaction rates
until scale = 500. Beyond that scale the transaction rate drops by more than an order
of magnitude while single disk tests are marginally slower. This is comparable to the
results observed on PostgreSQL. But note, that PostgreSQL accomplishes 15 times as
much transactions as Firebird.

• BTRFS shows at least a factor of 2 up to an order of magnitude lower transaction
rates. Contrary to PostgreSQL the low scale SELECT transaction rate of Firebird clearly
depends on the file system.

• Setting chattr +C (CoW off) for the Firebird database directory on BTRFS drops the
performance on low scale but enhances it on high scale.

• Compression does not affect the results. BTRFS on 4 k leaf size is somewhat better also
witnessed by DSI increase of +0.1.

• BTRFS on a single disk strongly differs from same tests on RAID5. It is vastly per-
formance reduced and shows an unexpected peak between scales = 200 and 500. An
explanation is given in sec. 4.9.6.

• LEDs on hard disk carriers show that even low scale SELECT tests generate strong
hard disk activity.
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Next tab. 13 shows some load information from Firebird SELECT tests.

Table 13: CPU and IO loads for Firebird SELECT on nereidum on file systems EXT4 and
BTRFS.

file system CPU write at low scale read = 0 link
% GB until scale

EXT4 11–12 4.6 500 ??
BTRFS 12 20 500 ??

• CPU load is much lower than on PostgreSQL. Only one logical processor core is busy.
This means Firebird is not using cores available or activity of concurrent transactions
is blocking each other.

• There is no additional CPU load for BTRFS.

• Contrary to PostgreSQL the Firebird SELECT transaction rate depends on the file sys-
tem. This is possibly caused by the observed write load of Firebird if SELECT testing
(see sec. 4.4.3).

• Column 4 shows that there is no read activity even on BTRFS until scale = 500. This
means, the database completely remains in cache for both file systems. Hence, all IO
activity in low scale range on BTRFS comes from write activity as seen in column 3.

4.9.5 Firebird, TPC–B Testing

Finally, we analyse the Firebird TPC–B tests. In fig. 35 we reveal transaction rates of different
file systems: EXT4, BTRFS with leaf size 16 k labelled as "BTRFS" only, with chattr +C (CoW
off) and compression, BTRFS with leaf size 4 k labelled as "BTRFS, 4k" all on RAID5 and
EXT4 and BTRFS 16 k on single disk labelled with "HDD".

• Both EXT4 tests deliver comparable results. RAID5 is somewhat dominant which is
also shown by DSI, which is 5.1 on RAID5 and 4.9 on single disk.

• BTRFS tests give at least a factor of 2 up to an order of magnitude lower transaction
rates than EXT4.

• Setting chattr +C (CoW off) for the Firebird database directory on BTRFS drops the
performance on low scale but rises it on high scale.

• Compression does not affect results. BTRFS on 4 k leaf size is clearly dominant also
confirmed by DSI increase of +0.2.

• BTRFS on a single disk strongly differs from same tests on RAID5.

• This is a similar picture as for SELECT tests: EXT4 nearly undistinguishable, BTRFS
substantially slower, no compression influence, better with 4 k leaf size, CoW off slower
on low scale and faster on high scale, BTRFS for single disk even worse.
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Figure 35: Transaction rate of Firebird TPC–B on nereidum, 4 threads on different file sys-
tems (order according to legend: ??, ??, ??, ??, ??, ??, ??).

Tab. 14 shows the same load information as for SELECT tests (as mentioned above).

Table 14: CPU and IO loads for Firebird TPC–B on nereidum on file systems EXT4 and
BTRFS.

file system CPU write at low scale read = 0 link
% GB until scale

EXT4 10–12 8–9 500 ??
BTRFS 12–14 25–28 500 ??

• CPU load results display that only one logical processor core is busy, as observed for
SELECT tests too.

• BTRFS generates more write load than EXT4 as also observed for PostgreSQL.

• Reading requests from database are done from file system cache until scale = 500. This
is also known from PostgreSQL.

4.9.6 Firebird, BTRFS degeneration

While testing Firebird especially with several threads on BTRFS we acquired substantially
different results. After some wondering about that, we investigated this degeneration effect
on BTRFS in detail by repeating the same single threaded test again and again after some
well defined testing history. Results are presented in fig. 36 (for SELECT) and fig. 37 (for
TPC–B). Under well defined testing history we understand the following (see legend in figures
mentioned above):
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file system just created The BTRFS file system is just initialized using mkfs.btrfs command
and a Firebird directory is created. The Firebird server is started after the configuration
has been adapted to use the new file system. The first test on this new file system is
used as reference.

repeat after lots of tests Many Firebird tests were done on this file system including TPC–B
tests that use several threads.

restart RDBMS Before next single threaded test is started the Firebird server is restarted man-
ually using service firebird2.5-superclassic restart.

BTRFS file system defragmentation Then the BTRFS is defragmented using the command
btrfs filesystem defragment.

server restart including RAID resync Denotes a restart of the server hardware including a
RAID5 resynchronisation process.

repeat immediately This is an immediate repeat of the last test.

repeat after test with 4 threads Finally, the file system is initialized again using mkfs.btrfs
and at first a TPC–B test with 4 threads is done before the single threaded check is
repeated. This tests the influence of one single TPC–B test run with 4 threads.
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Figure 36: Relative transaction rate of Firebird SELECT on nereidum, single threaded on
BTRFS for different file system live time history (order according to legend: ??,
??, ??, ??, ??, ??, ??).

• The first (red) line represents the reference test on a fresh installed file system. The
transaction rates of this reference test are divided by itself, hence the curve is a con-
stant line. All next lines are divided by the reference results in order to emphasize the
differences with respect to this first (reference) test run. The reference curve is the well
known profile, which is nearly constant until scale = 500 (see also sec. 4.4.3).
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• The second (green) line represents a test run after lots of other Firebird tests including
several threads on the same file system were done. Although the test repeats exactly the
same sequence under same conditions as the first one, it has about a factor of 5 lower
transaction rates at low scale range. The overall performance drop is also evidenced by
decreasing DSI by -0.6.

• Restarting the database server is not able to restore original performance results, see
the blue line and DSI increase of +0.2.

• A defragmentation run of the BTRFS file system only partially restores the original
performance especially at the lowest scales. There is still missing a factor of 2 until
scale = 500. The DSI is still reduced by -0.3.

• Restarting the server including a RAID5 resynchronisation process restores the original
performance at low scales until 100 only. At higher scales there is still missing up to a
factor of 2 (most at scale = 500). The DSI is still lowered by -0.2.

• The last black line is created after recreating the BTRFS file system and carrying out
a first TPC–B test with 4 threads. It shows that only one such multi–threaded tests
is enough to get the observed file system degeneration which even reduces the DSI by
-0.6.

• The degeneration is also visible by time needed for database generation as well as in
the duration of one complete test run. A typical Firebird test run on a fresh file system
lasts 9.8 h on a degenerated 13.3 h. On test with a high number of threads we observed
durations up to 17.4 h.

Let’s have another look at the load parameters at scale = 5 in tab. 15, for tests presented as
red, green and black line in fig. 36.

Table 15: CPU and IO loads of single threaded Firebird SELECT for scale = 5 after fresh
installed and degenerated file system.

test read bytes write bytes read time write time iowait CPU link
GB GB s s s %

fresh 0.00 10.55 0.01 44.87 19.21 12.62 ??
degenerate 0.02 3.26 76.42 1680.95 95.15 22.80 ??
degenerate 0.03 3.71 83.51 223.64 88.14 22.32 ??

• In the degenerated state the very small amount of bytes read (20 to 30 MB in 60 s)
needed huge amount of time of approx. 80 s. Although, there was written much less
data (3 to 4 instead of 10 GB) the write time value is 5–40 times as high as before. This
extremely enlarged IO activity is also visible in the iowait readout and also in a nearly
doubled CPU load.

• We observe about 130 kB per transaction write load while SELECT testing on BTRFS in
both cases (fresh and degenerated). There is no more write activity per transaction on
the system if degenerated.

• But why the system creates read load if degenerated? At scale = 5 the database size is
77 MB, this is small enough to host it completely within disk cache. The load logs of
the "fresh" example corresponds to expectations: Until and including scale = 500 there
are no read operations. In degenerated state there is read a small amount of data each
cycle but the iowait is potently bigger and retarding the measurements.
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Figure 37: Relative transaction rate of Firebird TPC–B on nereidum, single threaded on
BTRFS for different file system live time history (order according to legend: ??,
??, ??, ??, ??, ??, ??).

• Similar to SELECT tests.

• One exception: Defragmentation does not significantly restore performance. This can
only be observed after RAID5 resynchronisation. Is the degeneration effect caused by
combination of hardware RAID and BTRFS file system?
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4.10 Influence of Storage Hardware

In this section we compare measurements at different storage backends: single hard disks,
hardware RAID5 based on hard disks and single solid state disks. These measurements
were done on the systems nereidum (Linux server) with mechanical disks optionally as
single or as RAID5 with 6 disks, on jarvis (Windows 7 laptop) optionally with HDD or SSD
and on hammer (older laptop) with HDD only.

4.10.1 PostgreSQL

The first fig. 38 compares the TPC–B transaction rate functions for PostgreSQL done on
nereidum using 4 threads and on jarvis using 16 threads.
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Figure 38: Transaction rate of PostgreSQL TPC–B using 4 threads on nereidum, HDD (??),
RAID5 (??), 16 threads on jarvis, SSD (??) and HDD (??).

• The measurements on nereidum which are all done on mechanical disk storage back-
ends have a strong local maximum at scale = 10.

• In the low scale range up to scale = 500 both nereidum results are slightly different
only. The RAID5 backend is somewhat dominant between scale = 20 and 200 which
demonstrates shorter access times compared to single disk.

• RAID5 is not only reducing the access times but also increasing the throughput. This
can be seen in the high scale range where RAID5 nearly doubles the transaction rates
compared to single disk.

• The maximum of the transaction rate function of jarvis on the hard disk is shifted
to scale = 20 because the measurements are done with 16 threads compared to 4 on
nereidum.
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• The transaction rate function on the SSD remains at high level until RAM limit. It has
a wide maximum between scale = 200 and 500.

• Although the maximum transaction rate on jarvis with SSD is approaching less than
half of nereidum’s maximum, the whole test run benefit from large transaction rates
in the high scale range so much that the DSI on the laptop (6.8) becomes remarkable
higher than on the server platform (6.4).

• Compared to the test on the same system under same conditions but with a mechanical
disk the SSD test enhances the performance by nearly 2 magnitudes! The DSI is rising
by +1.8 from 5.0 (on HDD) to 6.8 (on SSD).

• We repeated the same tests on a different system: starlanes (Windows 8.1 desktop) in
order to exclude that jarvis is an outlier. Diagrams are not included here, for details
please refer to appendix at sec. ?? and ??. The shapes of the transaction rate func-
tions are similar to what we observed on jarvis. The DSI values are 5.4 for HDD and
7.2 for SSD. DSI values and transaction rates are higher than on jarvis due to the
higher performance desktop architecture of starlanes. But the DSI enhancement due
to exchanging the storage backend from HDD to SSD is the same as on jarvis: +1.8.

Let’s consider now the cumulative frequency distributions at scale = 50, where the trans-
action rates of all tests are on similar level and the error count due to collisions at 4 and 16
threads can be neglected, and at scale = 10000 in order to improve our understanding of the
transaction rate functions in fig. 39.
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Figure 39: Cumulative frequencies of PostgreSQL TPC–B on nereidum, HDD (??), RAID5
(??), jarvis, SSD (??) and HDD (??).

• The distributions at scale = 50 on nereidum (red and green thin lines) are clearly two–
part in short and long term transactions. Much more frequent short term transactions
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of about 1 ms residence time are executed in cache. During long term transactions
lasting up to several seconds the database system is stalling further transactions until
cache content is synchronized with the storage backend.

• The jarvis test on hard disk at scale = 50 (pink thin line) show an other characteristics:
The division into short and long term transactions is less jumpy. Again, most trans-
actions are short term, 50 % shorter than 3 ms, but longer residence times are rising
gradually up to 2 s. Besides, the residence times on jarvis are 5 to 10 times higher than
on nereidum which can be understood due to different architectures (laptop vs. server).

• At scale = 10000 long term transactions are slightly changed only, but the short term
transactions need about 100 times more time than at scale = 50. The database size is
exceeding RAM, hence reading actions must wait for IO too. This means, most trans-
actions have to wait until the hard disk reading and writing head is positioned to the
right sector. The inertia of mechanical parts determines the access time, which is in
the range from 10 to 100 ms7, on jarvis up to 1 s yet.

• The RAID5 array optimizes access times by distributing accesses to several disks. You
can see it on the thick green (RAID5) and red (single hard disk) lines up to confidence
levels of 99.7 %. The cumulative frequency distribution which represents RAID5 is
shifted to left, i.e. to shorter residence times. This means, 99.7 % of transactions are
finished faster on RAID5. The remaining 0.3 % of transactions need more time on RAID5
but not enough to worsen the overall result for RAID5.

• The frequency distributions on SSD (blue lines) are also two–part but the residence time
differences between short and long term transactions are in general 1 to 2 orders of
magnitude smaller than on hard disk systems. Moreover, the differences between the
curves at scale = 50 and 10000 (compare thin and thick blue line) are much smaller.
SSD especially benefit at large databases because they don’t have mechanical parts
that deteriorate the access times.

• Let’s compare SSD and HDD on jarvis: At scale = 50 (blue and pink thin lines) short
term transactions up to confidence level 50 % are nearly identical. The residence times
of these transactions are independent on the storage backend. Hence, the residence
times you can see here represent the core performance of jarvis. Beyond confidence
level 50 % curves are dispersing, i.e. accesses to the storage backends become more
and more relevant. The SSD is responding faster with storing written data and the
database system can start more transactions than on a HDD system.

• Finally, let’s look at the scale = 10000 frequency distributions of jarvis: The curve for
HDD (thick pink line) looks like the SSD curve (thick blue line) but shifted to the right
by 2 orders of magnitude in residence time. This means, accesses to the data on the
storage backend are 100 times slower on HDD compared to SSD. This also explains
why the transaction rates at scale = 10000 are different by a factor of about 100 too.

4.10.2 Firebird

Let’s have another look at the same tests on Firebird, the transaction rate functions in fig. 40
and the cumulative frequency distributions in fig. 41.

7This observations can not be esteemed as pure hard disk access times. One transaction comprises after the
first UPDATE 4 subsequent SQL commands, i.e. not only one access to disk. Furthermore, we have several
contemporary database sessions which are optimized by the server.
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Figure 40: Transaction rate of Firebird TPC–B using 4 threads on nereidum, HDD (??),
RAID5 (??), 16 threads on jarvis, SSD (??) and HDD (??).

• The shapes of the transaction rate functions on nereidum for Firebird and PostgreSQL
(see fig. 38) are similar, but the maximum values are only one fifth on Firebird, in the
high scale range comparable to PostgreSQL.

• The transaction rate function of Firebird on HDD has more fluctuation; watch the dip
at scale = 10.

• Firebird on jarvis with hard disk is one order of magnitude slower than PostgreSQL yet.
Even at the end of scale Firebird can not reach transaction rates that PostgreSQL can
do.

• In low scale range until scale = 10 PostgreSQL on HDD and SSD do not differ very much.
Firebird, instead, is up to one order of magnitude enhanced in that range if running on
SSD.

• In the high scale range Firebird and PostgreSQL benefit in the same sense by exchang-
ing the storage backend from HDD to SSD. In both cases the transaction rates are in-
creased nearly 100 times. However, PostgreSQL accomplishes with more than 1000 tps
much higher values than Firebird with 250 tps.

• The DSI enhancements by exchanging storage backends are equal for both systems for
both database systems: +0.2 on nereidum if you go from single disk to RAID5 and +1.8
on jarvis if you go from HDD to SSD.

• The cumulative frequency distributions acquired on Firebird are similarly shaped as on
PostgreSQL (see fig. 39). Note, that the residence times on Firebird starts at 0.8–1 ms
compared to 0.2–0.3 ms on PostgreSQL. This results in transaction rate differences by
a factor of 4.
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Figure 41: Cumulative frequencies of Firebird TPC–B on nereidum, HDD (??), RAID5 (??),
jarvis, SSD (??) and HDD (??).

• The cumulative frequency distributions at scale = 50 on nereidum (red and green thin
lines) are almost identical inside a confidence interval of about 98 %. Therefore, single
disk and RAID5 differ by 2 % of long term transactions only.

• At scale = 10000 the distribution on RAID5 (thick green line) is shifted with respect to
the distribution on single disk (thick red line) by a factor of 2 in residence time until a
confidence level of 99.9 %. RAID5 is able to finish most transactions on a large database
twice as fast as a single disk system.

• Same as PostgreSQL: If going from scale = 50 to 10000 (enlarging the database) all short
term transactions become long term.

• Jarvis on HDD already shows at scale = 50 at confidence levels of 50–68 % a substantial
increase of residence times from 70 to 300 ms. In the same confidence level range
PostgreSQL is found within 3.5–5 ms.

• Both distributions for SSD (blue lines) are more narrow than on PostgreSQL (see fig. 39):
They reach from 1 ms to 1 s on PostgreSQL but from 10 ms to somewhat less than 1 s on
Firebird. Hence, the long term transactions are comparable on both database systems,
PostgreSQL benefit from much faster short term transactions.

• The increase of residence times on SSD from scale = 50 (thin blue line) to scale = 10000
(thick blue line) is nearly equal on both database systems.

4.10.3 Different Core, same Storage Backend

Finally, let’s have a look on results acquired on different computers but the same single hard
disk as storage backend in fig. 42. Both computers mainly differ in their cores, see jarvis and
hammer in tab. 3.
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Figure 42: Transaction rate of PostgreSQL TPC–B on the same HDD on jarvis using 1 thread
(??) and 16 threads (??), as well as on hammer using 1 thread (??) and 16 threads
(??).

• The transaction rate functions of the tests using 1 and 16 threads show very similar
shapes for both computers although they have very different cores: i7 and Core2Duo.

• The only significant difference is the cut–off location: It is shifted to the right, i.e. to
higher database sizes on jarvis which has more RAM available.

• The cut–off location on jarvis impacts the DSI by +0.1 compared to hammer in both
cases.

• The CPU loads of tests using 16 threads at scale = 10 are 48 % on jarvis and 89 % on
hammer.

• Although we compared different generations of laptops but having the same HDD as
storage backend the transaction rates are nearly equal. This means, the storage back-
end mainly determines the TPC–B results. On jarvis the storage backend is not fast
enough to store transactions finished by the core, hence the CPU is not utilized fully.
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4.11 Remote Testing

A nice feature of DSBENCH is remote testing. We optionally use 1, 2 and 5 remote clients to
make tests and compare the results with tests done locally. This sections investigates: How
the performance is influenced by remote access? Is it possible to increase the performance
further by outsourcing the client part of DSBENCH?

4.11.1 PostgreSQL, SELECT Testing

The first fig. 43 opposes local and several remote PostgreSQL SELECT test runs on nereidum
using 4 threads done on different file systems.

• In the low scale range local processing is faster than 1 and even 2 remote nodes. Ob-
viously, the network activity is potentially thwarting the transaction processing. If you
include more remote nodes (in our example we use 5) the database system gets more
transaction requests per time interval again to be able to raise the transaction rate.
In this example the transaction rate even surpasses maximum local results as seen in
sec. 4.4.1).

• In the high scale range we also observe an increase of the transaction rate with higher
total number of clients (nodes * threads per node). At this range networking has sec-
ondary influence, it is dominated by storage backend limitations. It is striking to note
that local and single remote tests gave the same results.

• The CPU load of both tests using 5 remote nodes is in most cases below 50 % and it
never exceeds 58 %. As observed at local SELECT testing the CPU is half utilized only.

• A single network connection between a client and the database system is not fast
enough to fully utilize the server with SELECT transactions. Just by adding more
remote nodes the database system gets more requests to come to its limit. This also
means, the network hardware itself is not the limiting factor, it is the software network
overhead per connection.

• The differences between the file systems are marginally, they are not traceable by DSI.
According to the transaction rate functions BTRFS is somewhat dominant.

The next fig. 44 shows the transaction rate functions of PostgreSQL SELECT tests on nerei-
dum using 2 remote clients and different numbers of threads per client.

• Compared to fig. 8 remote measurements can raise transaction rates up to 8 threads
(with 2 nodes there are 16 concurrent database stressing clients). In local case maxi-
mum was already reached at 4 threads, see sec. 8.

• The CPU loads are between 5–12 % (for 1 thread), at 32–57 % (for 8 threads) up to 35–
69 % (for 64 threads). Compared to local testing (see sec. 4.4.1) more than half of the
CPU power is used but still not fully utilized.

• At maximum and scale = 1 we have 36 % CPU load and achieve 51,000 tps with 2 remote
nodes but 51 % CPU load and 41,600 tps only when testing locally. Hence, the database
server may stress more system resources if the clients do not run on the server itself.
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Figure 43: PostgreSQL transaction rate for SELECT on nereidum, BTRFS and EXT4, 4
threads, locally (??, ??) with 1 (??, ??), 2 (??, ??) and 5 (??, ??) remote nodes.
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Figure 44: PostgreSQL transaction rate for SELECT on nereidum, EXT4, 2 remote nodes
using 1 (??), 2 (??), 4 (??), 8 (??), 16 (??) and 64 (??) threads.

4.11.2 PostgreSQL, TPC–B Testing

Fig. 45 compares local and several remote PostgreSQL TPC–B tests on nereidum using 4
threads on different file systems.

• The transaction rates show tremendous differences depending on the file system: On
EXT4 the transaction rates are less sensitive to the number of nodes, DSI differences
are 0.1 at most. On BTRFS all remote tests show worse performance than the local
test.

• EXT4: In the range scale = 10 to 500 all transaction rate functions reveal a nearly identi-
cal exponential decay. The performance can not be increased by hightening the number
of nodes. This means, the database server is not thwarted by network as bottleneck and
shows its own performance.

• EXT4: Until scale = 10 the performance is decreasing if rising the number of nodes
because the probability of collision induced transaction rollbacks rises.

• EXT4: Beyond scale = 500 where the transaction rate is dominated by IO we observe
the same behaviour as at local testing (see sec. 4.4). The higher the number of clients
(nodes * threads) the higher the transaction rate.

• BTRFS: Remote measurements using one node reduce the transaction rates by another
factor of 2–3 against local. The DSI is decreased by -0.8. It is not conceivable that the
network is the bottleneck here because under same circumstances EXT4 which can
process many more transactions than BTRFS not show any performance loss if remote.
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Figure 45: PostgreSQL transaction rate for TPC–B on nereidum, BTRFS and EXT4, 4
threads, locally (??, ??) with 1 (??, ??), 2 (??, ??) and 5 (??, ??) remote nodes.

• BTRFS: Rising the number of nodes also increases the performance but even 5 nodes
are not enough to retrieve the performance of the local run. At 5 remote nodes the DSI
is still -0.3 less than locally.

• BTRFS: Higher number of nodes can outperform the local test in the high scale range
beyond scale = 500 only.

Let’s have a more detailed look at the remote tests on BTRFS. For that purpose the next
fig. 46 shows the transaction rate functions of PostgreSQL TPC–B tests on nereidum using 2
remote clients and different numbers of threads.

• Looking at DSI, the overall performance is increasing up to 16 threads and remains
constant up to 64 threads.

• The CPU load at 64 threads is mainly about 30 % and not more than 40 % in low scale
range, but 70–80 % in high scale range. From other IO parameters we could not find an
indication why the CPU load is less utilized at low scale range.

• At 1 and 2 threads (corresponds to 2 and 4 clients) the transaction rate is nearly con-
stant until scale = 500. At higher thread counts the plateau is going on a function
having a local maximum at scale = 20, but the sharp local maximum known from local
measurements as seen in fig. 31 can not be observed here. Something is limiting the
transaction rates at low scale, from the data available we are unable to isolate a reason.

• The transaction rate drop at very low scale is caused by collisions.

• The cut–off is clearly visible between scale = 500 and 1000, especially at higher thread
counts.
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Figure 46: PostgreSQL transaction rate for TPC–B on nereidum, BTRFS, 2 remote nodes
using 1 (??), 2 (??), 4 (??), 8 (??), 16 (??) and 64 (??) threads per node.

• At high scale range the transaction rate is increasing with rising number of threads.
At 64 threads we come to nearly 500 tps at scale = 10000 which is similar to what we
discussed about fig. 33.

• BTRFS benefit from heavily parallel acting clients but must accept a performance loss
due to remote access. In order to compensate this loss many nodes are required.

In order to understand the performance loss due to remote access we compare the cumu-
lative frequency distributions of a local and a single remote test on BTRFS (solid lines) with
EXT4 (dashed lines) results under same conditions in fig. 47.

• BTRFS remote measurements in general have longer residence times. Residence times
on EXT4 are equal in local and remote case.

• At scale = 10 remote long term transactions on BTRFS at confidence levels 99–99.7 %
are an order of magnitude slower than local. Again, this can not be observed on EXT4.

• Even the longer transactions at scale = 1000 are again longer in remote case. For ex-
ample, at confidence level 95 % the residence times increase from 30 ms (local) to about
80 ms (remote). EXT4 is at 20 ms in both cases.

The longer residence times on BTRFS in remote case can not be explained plausible by
network latency, because:

• On EXT4 local and remote tests give very similar transaction rates. In addition, these
rates are higher than on BTRFS. Hence, a network saturation effect can be excluded.

• Long term transactions are longer in remote case, although at long term the time por-
tion needed by networking should be smaller yet. On EXT4 the residence times of local
and single remote transactions are equal.
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Figure 47: Cumulative frequencies of local BTRFS ?? and EXT4 ?? as well as single remote
BTRFS ?? and EXT4 ?? tests on nereidum using 4 threads.

• At a transaction rate of 10,000 tps you can transfer 13.1 kB of data per transaction to
fully utilize a 1 Gb network.

• At SELECT measurements the database server can even handle 60,000 tps (see fig. 43).

What is really transferred by one transaction? We want to answer this question in the
following tab. 16.

Table 16: IO loads of local and single remote tests on nereidum, BTRFS.

scale rate write write_time iowait
tps GB kB/tr s MB/s s ms/tr

local (??)
10 2834 16.75 103 141 122 29.39 0.17

1000 313 4.05 226 1938 2 135.20 7.2
remote (??)

10 920 6.07 115 282 22 44.18 0.8
1000 189 2.31 213 868 3 173.58 15.3

• The amount of written data per transaction is comparable for local and remote tests.

• Significant differences can be seen in write time and iowait, especially at scale = 10. The
write time per transaction is 6 times higher in remote case.

• The iowait time per transaction is more than 4 times higher in remote case compared
to local.
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• If we combine tests on BTRFS with remote access the CPU wastes more time with IO
waiting so that transaction performance is decreased substantially. Why is there an
interaction between file system and networking?

DSBENCH can not acquire network load data yet. Therefore, we make some short tests with
PostgreSQL on EXT4 on nereidum consisting of 3 cycles at scales 2 and 5 only. In order
to catch network traffic we used the command line tool ifconfig. Results are summarized in
next tab. 17.

Table 17: Network traffic of remote DSBENCH tests with PostgreSQL on nereidum.

test n j rate network load
tps MB/s Byte/tr

TPC–B 1 4 9000 4.6 460
TPC–B 2 4 10100 9.3 605
TPC–B 2 8 9800 13.7 670
SELECT 1 4 22500 7.1 330
SELECT 2 4 29000 9.7 360
SELECT 2 8 45000 15.1 350

• The "MB/s" column is determined from the number of bytes sent and received divided
by the total duration of the test which is 3 cycles * 2 scales * 60 s. It represents the
mean transfer speed.

• The column "Byte/tr" is calculated from the number of bytes sent and received divided
by the total number of transactions tried (i.e. including failures due to collisions). It
represents the mean transferred amount of data per transaction. The data transferred
by SSH from the database server for displaying interim results of DSBENCH is estimated
to be about 1 kB per cycle, this can be neglected.

• At SELECT tests the transaction rate and MB/s results are proportional, at TPC–B
not. With rising number of failed transactions the network load also increases. It
is plausible: Failed transactions are finished faster. Hence, clients can request next
transaction faster too. The network load increases.

• The column "Byte/tr" shows that aborted transactions lead to a higher network traffic.

• The amount of data transferred via network at SELECT tests and the measured trans-
action rate of 45,000 tps prove that TPC–B measurements on BTRFS which have much
less performance can not be affected by the network.

4.11.3 Firebird, SELECT Testing

The first fig. 48 opposes local and several remote Firebird SELECT test runs on nereidum
using 4 threads done on EXT4 only.

• In low scale range the remote SELECT transaction rate increases with adding more
nodes. Local tests are limited to about 3500 tps (see fig. 12), 5 remote nodes achieve up
to 8600 tps.

• In high scale range the remote SELECT transaction rate is also enhanced by adding
more nodes.
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Figure 48: Firebird transaction rate for SELECT on nereidum, EXT4, 4 threads, locally (??),
with 2 (??) and 5 (??) remote nodes.

• Compared to the local test the 5 remote node test rises the DSI by +0.8.

• The limitation of the transaction rate if rising the thread count as described in sec. 4.4.3
is suspended. This indicates that the database performance is squandered by the
Python driver or the client API. Outsourcing the client software to a remote node is able
to enhance the SELECT transaction rate several times.

Let’s also take a look at the acquired load data in tab. 18 in low scale range to see if there
is another indication why the transaction rate can be increased remotely but not locally.

Table 18: CPU and write loads of local and remote Firebird SELECT tests.

nodes CPU rate write link
% tps GB

local 17–32 3500 6.5 ??
2 11–55 5500 10 ??
5 21–70 8600 15 ??

• The CPU load indicates that several cores are utilized but still not fully at 5 remote
nodes.

• Note, that the CPU load is smaller in low scale range: At 5 remote node test it is about
25 % there. We can expect that additional nodes can further enhance the performance.

• According to CPU load results shown in tab. 7 we also have about 25 % CPU utilization
in low scale range in local test but less than half of transaction rate. This indicates that
much CPU power is allocated by client side.
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• As observed in sec. 4.4.3 the remote SELECT testing also generates write load on the
database server. According to the amount of data written we found the same value of
about 30 kB per transaction on EXT4 file system.

4.11.4 Firebird, TPC–B Testing

The fig. 49 compares local and several remote Firebird TPC–B test runs on nereidum using 4
threads done on EXT4 only.
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Figure 49: Firebird transaction rate for TPC–B on nereidum, EXT4, 4 threads, locally (??),
with 2 (??) and 5 (??) remote nodes.

• Maximum transaction rate at scale = 10 is 2000 tps. It is reached by the local and the 2
remote node test.

• At lower scales local test is somewhat better, at higher scales the remote test.

• At 5 remote nodes the maximum is lower and shifted to scale = 20 which corresponds
exactly to the number of concurrent clients (number of nodes * number of threads).
Beyond scale = 20 the transaction rate function goes nearly the same way as the other
tests.

• At highest scale the transaction rate is enhanced with rising number of nodes.

• Our observations indicate that Firebird can not achieve more performance than that
measured locally or with low number of remote nodes. Higher numbers of remote
nodes lead to performance losses due to rising collision probability in low scale range.

• Nevertheless, the CPU is far away from being fully utilized. In the 2 remote node test we
found 12–25 % utilization in low scale range and up to 50 % in high scale range. Using
5 nodes do not catch more CPU power. From this we conclude, that Firebird is not able
to balance transaction load well over all CPU cores.
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5 Discussion

In this section we extract some important issues from the plenty of results and discuss them
within context of specialized questions. Thus, this discussion is compiled like a FAQ.

5.1 Scaling Performance

Questions:
How can we understand our results in general?
How do database systems scale with rising number of clients?
What can we do else to increase the performance?
How can we avoid performance losses?

Diagrams showing transactions rates as a function of the database size or scale (transac-
tion rate and confidence level diagrams) advice to separate the scale range into 4 different
segments. Note, that the scale ranges Xs given next are properly for the Linux servers syrtis
and nereidum. They can differ on other computers.

Transaction collision determined: Xs = 1 . . . N × J (#1)
In case of TPC–B measurements write accesses to identical rows in one table from different
clients are aborted and rolled back due to isolation level REPEATABLE READ. As a result
an exception is thrown, the transaction is wasted and not counted for rate determination.
In "retry" mode of DSBENCH the same transaction request is repeated until success other-
wise a new random transaction is fired. Due to denied transactions the effective number of
successful transactions during a definite span of time (duration) is smaller than it could be
without collisions. Hence, the transaction rate decreases.

Let’s estimate how many transactions are expected to fail:
According to specification a single TPC–B transaction executes 3 UPDATE, 1 SELECT and

1 INSERT SQL commands. Each transaction updates single rows in 3 different tables. Most
collisions of concurrent transactions are expected in the table having the lowest number of
rows. This is the "branch" table which size (number of rows) is equal to the parameter scale
Xs. On the other hand, the total number of concurrent clients is the total number of nodes
N multiplied with the total number of threads J .

Each client selects a random branch row number for its next transaction. Hence, we expect
rising frequency of collisions if the relation V = Xs

N×J becomes smaller, e.g. if the parameter
scale decreases with respect to the number of concurrent clients. For V < 1 collisions are
unavoidable because there are more concurrent clients that must share a smaller number
of branch rows. If V ≥ 1 theoretically all concurrent clients can access different branch
rows, but random branch row selection still collide. The probability of same row selection
decreases with rising scale.

If DSBENCH is running locally, the random number generator creating input values for
transactions is able to distribute subsequent transactions to different branch rows. There-
fore, we expect the maximum transaction rate if scale is equal to the number of threads.
This is the smallest database at which all threads can be distributed over different branches.

Core determined SELECT: Xs = N × J . . . 500 (#2)
In this range the database resides in the main memory completely. Reading operations
are executed from cache, waits for IO readings are not necessary. Hence, the transaction
rate of SELECT operations in this range remains high and is determined by the core (CPU,
mainboard and RAM) only. In the case of applying DSBENCH remotely the transaction rates

85



may also be limited by network latency and overhead as illustrated in the transaction rate
per node diagram in sec. 4.1.2.

Our tests with pgbench (see sec. 4.2) demonstrate that the PostgreSQL SELECT transaction
rate is increasing linearly with the number of concurrent clients until maximum utilization
of all CPU cores. DSBENCH on the Linux servers increases the performance only until 50 % of
CPU utilization, i.e. until 4 threads only although there are 8 cores available (see sec. 4.4.1).
Another test on a Windows laptop in sec. 4.4.6 does not show the same limitation. From the
available data we can not explain that observation.

Firebird shows a different behaviour than expected. First tests with earlier Python drivers
show poor results with respect to distributing concurrent transactions to the available CPU
cores. Later tests using updated Python drivers become better but far not comparable to
results on PostgreSQL (see sec. 4.8.2).

How to explain? Our SELECT tests disclose that Firebird is writing on the database file
about 30 kB per transaction on EXT4 (sec. 4.4.3 and 4.11.3) and NTFS (sec. 4.4.8) file sys-
tems as well as 130 kB per transaction on BTRFS file systems (sec. 4.9.6). We assume that
the Python driver triggers some preparing operations that aim to enhance the performance
for "ordinary" database queries but distorting our benchmark.

In case of reading and writing database as by the TPC–B test the database system needs
to synchronize changes done in buffers with the storage backend. The data may completely
reside in the file system cache, yet the database system requires IO operations that can stall
further transactions. It is important how fast the storage backend can accomplish the write
accesses, for instance by buffering in hardware caches, by distributing over several disks
(RAID) or by positioning the hard disk head.

An example of using a very slow storage backend is demonstrated in sec. 4.10.3: The HDD
as a bottleneck limits the transaction rates so much that a fast computer delivers the same
poor results as an older computer. The CPU is mostly waiting for finishing IO operations.
That’s why we call this range "Core determined SELECT".

Another example in sec. 4.10.1 and 4.10.2 compares a HDD and a SSD as storage back-
ends. The system using the HDD must wait for positioning of mechanical parts that need
much more time. Hence, a database server that uses SSD instead of HDD can finalize trans-
actions much faster and accept more transaction in the same time. This leads to more
effective CPU utilization.

The effect of stalled transactions can be investigated in detail by looking for long term
transactions (high residence times) in cumulative frequency diagrams (see sec. 4.1.4) and in
confidence level diagrams (see sec. 4.1.5). There we see that long term transactions become
more frequent as higher the database size. This is expected: Larger databases need more
cache and physical space on disk. Therefore, less portion of data can be kept in cache and
positioning of hard disk heads needs more time.

Confidence level diagrams (see sec. 4.1.5) also show that very most transactions are
processed fast. They behave like SELECT transactions, i.e. they reach nearly constant
and high rates in this range. This is not apparent from the transaction rate and time
diagram (see sec. 4.1.1) where the global transaction rate is gradually decreasing. Our test
drives the database to its limit by requesting lots of transactions without any delays. In
normal situation client requests are more distributed over time, i.e. the database server has
more opportunity to store transaction results in background. In this case the clients will
experience fast responses that represent mainly the network latency and (if the requests are
more complex) the core power.

Cut–off: Xs = 500 . . . 1000 (#3)
The range where the transaction rates of SELECT are decreasing by orders of magnitude is
denoted as cut–off. On TPC–B measurements this is not or less visible in the transaction rate
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and time diagrams (see sec. 4.1.1), but in the confidence level diagrams (see sec. 4.1.5) where
short and long term transactions may be distinguished. In the cut–off range the residence
times of most transactions become long.

Our standard tests measure at scale = 500 and 1000 which doubles the database size. In
sec. 4.7.2 we investigate some SELECT tests in the cut–off range at higher scale resolution.
We find that the cut–off is much more steep than displayed in standard tests and is located
at the same place where the first 1 % of short term transaction become long term. At this
point the database can not be hosted in the main memory completely. This means, more and
more transactions need to wait for IO, i.e. they have to wait for positioning the disk head
which needs orders of magnitude more time than reading from cache.

The location of the cut–off is only indirectly impacted by database configuration. In Firebird
configuration set the parameter FileSystemCacheThreshold bigger than DefaultDbCache-
Pages in order to delegate caching completely to the operating system (see sec. 4.7.3). Post-
greSQL delivers configuration parameters shared_buffers and effective_cache_size. The pa-
rameter shared_buffers is an exclusive and common allocation of RAM for all PostgreSQL
processes. The parameter effective_cache_size is an estimation how much memory the op-
erating system can use as file system cache which is used by the optimization planer (see
[EH13], p. 34 and [Fro12], p. 100).

Our measurements in sec. 4.7.2 even show that higher shared_buffers shifts the cut–off
to lower database sizes because the file system cache has less memory available. In other
words, we recommend to use a smaller shared_buffers value for read only databases, as
also stated in [EH13] at p. 34.

Storage backend determined: Xs ≥ 1000 (#4)
Beyond cut–off transactions (even SELECT) are processed from the storage backend. The
residence times are mainly determined by IO waits. The very first SQL command of the
TPC–B transaction must wait until the requested account table row is read from the storage
backend. In this situation SSD have crucial advantages against all systems based on me-
chanical disks because the access times are 0.1 ms compared to about 8–18 ms on HDD (see
tab. 3). Such differences we can directly observe in the transaction rate functions of HDD
and SSD of both database systems (see sec. 4.10.1 and 4.10.2).

At high scales all SELECT and TPC–B measurements rise the transaction rate with the
number of threads: At these large databases most database pages must be loaded from disk
before a transaction can be done. If the number of concurrent clients rises the probabil-
ity that the demanded database page is just available in cache also rises. Therefore, the
probability that a transaction can be done quickly rises if the number of clients rises.

By comparing the cumulative frequency diagrams at the same high scale but for different
thread counts we find: At scale = 5000 and 64 threads there are about 5 % of transactions
having 1.5–2 orders of magnitude smaller residence times. But most transactions have
longer residence times in the case of more threads, for instance at 95 % confidence level the
residence time is rising from 25 ms at one thread to about 250 ms at 64 threads. However,
threads are running parallel, i.e. residence times of transactions do overlap. Therefore, if
we divide the residence time by the number of threads to get a "residence time per thread"
we obtain about 4 ms for the 64 threads case. But be careful with this division because
the effective number of parallized threads depends on the system architecture and on the
operating system scheduler. Hence, we consider this value as a lower limit.

At high scale PostgreSQL and Firebird often show similar performance (see for instance
fig. 14). This supports the idea that in this range the storage backend performance is
determining the database performance.
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Which actions are profitably to enhance the performance and the DSI?
In order to rise the DSI we have to enlarge the area below the transaction rate function.

This can be done by avoiding the decrease of the transaction rate induced by collisions in
range #1, by rising the transaction rate in the ranges #2 and #4 and by shifting the cut–off
edge to right, i.e. to higher database sizes.

Transaction collision determined: (#1)
The decrease of transaction rates in this range is forced by design of TPC–B. Only a limitation
of the number of threads can help. Use one threads for each core, at this point all CPU
cores are optimally utilized. Otherwise, use a CPU that have more power per core. For
database applications we learn that transaction isolation level REPEATABLE READ may
lead to collisions that reduce the performance. You should design you databases accord-
ingly. Try to avoid such collisions, for instance by partitioning complex transactions. In this
case REPEATABLE READ provides similar performance as READ COMMITTED (see sec. 4.6).

Core determined SELECT: (#2)
The SELECT transaction rate in this range benefit mainly from CPU, mainboard and RAM
performance. But keep in mind bottlenecks that arise from networking if there are many
short transactions that generate more traffic. Another brake can be the choice of the
client software. Database systems that also have significant write load are additionally
determined by the IO responsivity (see especially results on BTRFS, sec. 4.9). If the storage
backend is not fast enough to store transaction results processed by the core, subsequent
transactions are stalled. In this case the storage backend becomes the bottleneck. Prefer
storage backends that have hardware caches like hardware RAID and lower access latencies
like SSD (see sec. 4.10).

Cut–off: (#3)
In order to shift the cut–off to the right, the server requires more RAM to buffer database
pages. This can be done by two ways: Add more RAM or indirectly optimize RAM usage by
configuration. But keep in mind, an increase of shared_buffers, for instance, can effectively
reduce the size of the database that can completely reside in cache (see sec. 4.7.2).

Storage backend determined: (#4)
In this range increase the throughput and decrease the access latency of the storage
backend by using hardware RAID with many disks or, as shown impressively in sec. 4.10,
by applying SSD.

5.2 File Systems and other Benchmark Tools

Questions:
Database benchmarks are expensive and time consuming. Are there simple tools that allow
to find similar results as DSBENCH about a system that is intended to be used as database
server?
Is it possible to find the results observed on different file systems by using other tools too?
Can other tools help to explain our results?
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In order to understand results found on different file systems we also applied some other
well known benchmark tools: dd (disk dump), bonnie++ (a dedicate IO benchmark tool) and
postmark (a benchmark tool that simulates mail delivery agent activity).

dd
Using dd we found that BTRFS has 3–4 % more read and 6–9 % more write sequential
throughput than EXT4 (see nereidum test in tab. 4). This simple test can not explain why
BTRFS mostly gave worse transaction performance than EXT4. Note, that dd is testing
sequential throughput only, but databases generate random access.

bonnie++
The next tool bonnie++ is a dedicate IO and file system testing tool, that is also able to check
random access. According to its manual page: "There are two sections to the program’s
operations. The first is to test the IO throughput in a fashion that is designed to simulate
some types of database applications. The second is to test creation, reading, and deleting
many small files in a fashion similar to the usage patterns of programs such as Squid or
INN."

In the first section we used default parameters which means a test file size that is twice as
large as the RAM (32 GB on server nereidum). For second section we varied the -n command
line parameter to 128, 256, 512, 1024, 2048 and 3072 to test different numbers of files.

Table 19: Results of bonnie++ single large file tests on nereidum.

system putc put_block rewrite getc get_block seeks
kB/s MB/s MB/s MB/s MB/s kB/s

EXT4 1207 679 279 5.8 687 1120
EXT4, HDD 1247 143 62 4.7 175 459
BTRFS 970 682 268 5.3 882 1151
BTRFS, chattr +C 995 702 281 5.4 901 1129
BTRFS, HDD 975 151 61 3.7 194 448
BTRFS 4 k 969 623 239 5.5 799 971

putc: The file is written per character using the putc() stdio macro. This is done 25 % faster
by EXT4 than by all BTRFS variants.

put_block: The file is created blockwise using write() call. This seems to be somewhat faster
on BTRFS with 16 kB leaf size.

rewrite: Each block of the file is read with the read() call, dirtied, and rewritten with write(),
requiring an lseek(). There are no significant differences between both file systems.

getc: The file is read sequentially using the getc() stdio macro. There is no significant differ-
ence between the file systems.

get_block: The file is read sequentially using read(). This is done about 25 % faster by
BTRFS.

seeks: This randomly uses lseek() to the file and is the only random function that is applied
to the test file. Again, both file systems deliver comparable results that can not explain
factor 3 and more differences observed with DSBENCH.
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For more detailed information about bonnie++ output see documentation that is part
of bonnie++ installation (see file /usr/share/doc/bonnie++/readme.html on a Debian 8
system).

Finally, lets also have a look at creating and deleting of files randomly for completeness
although this is less important for database applications (see fig. 50).

ran_create: At small file numbers EXT4 is a factor 2–3 better than BTRFS, at large numbers
both systems become similar. Note, that bonnie++ is working with up to 3 million files.

ran_del: At -n 128 EXT4 is a factor of 2 better but shows an exponential decay. BTRFS
remains nearly independent on the number of files, i.e. shows the better scaling be-
haviour.

test duration: EXT4 needs more than 2 h to accomplish one bonnie++ test run including -n
128, 256, 512, 1024, 2048 and 3072, but BTRFS is finishing the same in less than
15 min. The main part where EXT4 requires much time is deleting tons of small files, a
task that is not applied in database systems.

One of the biggest disadvantages of bonnie++: Reading and writing operations do not
change very often. This tool carries out a definite action (for instance reading blocks, writing
blocks or creating files randomly) for a longer time again and again and measures the
duration. On a database server reading and writing is alternating very fast.

postmark
A program that benchmarks mixed read and write access is postmark. It uses tons of small
files having sizes like e–mails and are distributed over a large system of folders to make
transactions like a mail delivery agent and measures the time required. Transactions can
be: Create a new file, remove it, append and delete content, exchange files between folders.

Some practical experience with postmark on different file systems including EXT4 and
BTRFS can be found in Heinlein [Hei14], p. 171–172. He mentioned that BTRFS only reached
one third of the transaction rate that is possible on EXT4, which is similar to that what we
observed for databases in low scale ranges.

Tests in Heinlein [Hei14] are limited to one set of test file sizes and one number of test files.
We extend the tests to 4 different numbers of files: (100, 200, 500 and 1000) * 1000 files.
Other conditions are: test file size 0.5 kB to 50 kB in 10000 folders, 500,000 transaction. We
apply the scripting feature of postmark with the following script:

set size 500 50000
set transactions 500000
set subdirectories 10000
set report terse
set number <number>
show
run
quit

For <number> we enter the 4 values: 100,000, 200,000, 500,000 and 1,000,000. Output
of postmark we display in diagrams having the number of files on their x axes. As an example
see the next diagram in fig. 51 which presents the measured transaction rate.

If EXT4 or BTRFS delivers better results depends mainly on the number of files. At low
numbers BTRFS is superior, at higher numbers EXT4. The largest difference is found at
500,000 files. The file size also impacts the results especially if file system can effectively
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Figure 50: Testing file system performance using bonnie++: random create and delete tons
of small files.
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Figure 51: Testing file system performance using postmark: transactions.

cache the transactions. The high transaction rates on BTRFS at 100,000 and 200,000 files
may be caused by caching. The 200,000 files approximately require 4.7 GB8 of disk space,
this is small enough to reside completely in cache on the servers. At 500,000 files already
11.8 GB are needed, which is nearby the memory size that the system can use as disk cache.
From this we conclude that BTRFS can handle cached data with higher performance than
EXT4, but be careful because the influence of file sizes with respect to leaf sizes is not
investigated so far. This result is opposite to what we observed at TPC–B tests in low scale
range where EXT4 is superior.

One issue also remains with postmark: The tool is benchmarking a system using thou-
sands of small files which is not typical for database servers. Especially, Firebird is using
one file only.

Conclusion:
The alternating benchmark tools we applied (dd, bonnie++ and postmark) are less suitable to
qualify a system under test for use as database server. The dd tool is only able to determine
the sequential throughput of a storage backend. The tool bonnie++ is collecting detailed IO
data, but even the tests on a single large file that are aimed to simulate database activity
do not deliver similar results as observed with DSBENCH. We assume that the monotonic
actions of bonnie++ have less validity for database servers. Even postmark that is changing
reading and writing access very fast can not deliver sound data that correspond to DSBENCH

results. The observed performance difference of EXT4 and BTRFS in Heinlein [Hei14] that
matched our results well by coincidence obviously. The postmark results strongly depend
on test parameters. Hence, investigating systems with postmark becomes as extensive as
DSBENCH itself.

8We assume that the sizes of the files are distributed uniformly.
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Summarized, benchmarks that want to deliver useful results about databases on a system
under test must be carried out on the database systems itself. This means, use pgbench,
DBBench or DSBENCH! In order to have a simple indicator to compare many different systems
(like the throughput delivered by dd) DSBENCH calculates the DSI value.

For comparing purposes execute DSBENCH with command line option -b (to select Firebird
if wanted) only. Keep all other parameters in the default configuration file unchanged. This
means, the test is executed locally, using scales = 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000,
2000, 5000 and 10000, 16 threads, one connection per thread and without modes like
"retry", "prepare" and "reconnect". This DSI defaults are also forced by the command line
option "dsi".

5.3 Compare Results to known Papers

Question:
How do compare our results with similar published investigations?

[Smi09]:
This is one of the very first papers we found. It describes an approach to apply pgbench
to get useful performance information about a system under test. This article inspires us
to develop further its basic idea, i.e. to measure the transaction rate depending on the
database size and to present a transaction rate characteristic graphically in the transaction
rate diagrams of DSBENCH. This paper already distinguishes the results in CPU und IO
determined ranges.

[Von14]:
This is a blog of Tomas Vondra which is fully dedicated to benchmarking PostgreSQL using
pgbench. Next citations are all from the same author.

[Von11]:
Unfortunately, this earlier paper can not be found any more. Among others, it investigated
transaction rates over time on different file systems, especially on BTRFS with and without
CoW.

[Von15b]:
In this presentation shown at pgconf.eu 2015 in Vienna the author gives an overview over
his investigations. He tries to answer the question: Which file system on SSD is optimal for
PostgreSQL from performance point of view?

All his measurements are done at 3 different scale values. Low size means a database size
of 200 MB; medium size means 50 % of RAM and large size corresponds to a database size of
200 % of RAM. Results are summarized as follows:

p. 28: SELECT only, low size, scales linearly with number of cores, independent on the file
system. According to sec. 4.4.1 DSBENCH only scales up to 50 % of available CPU power.
As illustrated in sec. 4.9.1 the low scale range results on different file systems are nearly
equal.
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p. 29: SELECT only, large size, differences between file systems are 20 %. In sec. 4.9.1 we
found some difference in high scale range for compressed BTRFS but not for EXT4
compared to uncompressed BTRFS. But keep in mind, we tested mechanical disks
only, the paper compares results on SSD. On SSD the access times are much lower,
transactions are finished faster. In this case the differences of file systems become more
important, otherwise the transaction rates are dominated by the access latency of hard
disks.

p. 32: TPC–B, low size, BTRFS about 50 % below EXT4. Increasing the number of clients
reduces this difference, but at maximum only 16 clients are investigated. In sec. 4.9.3
we analyse the differences between file systems in more detail with frequency distribu-
tions. In low scale range the residence times of most transactions on BTRFS are 2–3
times longer. This result corresponds well to Vondra’s observations.

p. 34: TPC–B, large size, EXT4 about 30 % better than BTRFS. Fig. 33 displays a similar set
of curves as the presentation, however at a database size that is 10 times higher than
RAM and up to 64 threads (clients). In this case we observed that BTRFS becomes
better than EXT4.

p. 37: On this page we see transaction rates over time. The rate is regularly dropping to 0 for
several seconds on BTRFS with CoW activated. On other file systems the transaction
rate is more constant.

p. 39: 50 % BTRFS losses by CoW compared to nodatacow. We did not test the mount op-
tion nodatacow so far but another kind of switching CoW off: chattr +C. Interestingly,
chattr +C is namely reducing the write load on the system but can not enhance the
performance (see sec. 4.9.3).

Note, that all of our measurements on Linux file systems are done on RAID5 systems with
6 disks but Vondra’s on SSD. Hence, we can compare the results with reservation only.

[Von15a]:
This article emphasizes again the strong variations of the transaction rate in time on BTRFS
(jitter). The author speaks about "rather inconsistent and unstable behaviour". Owing to
that fact he advises against usage of BTRFS for on–line transaction processing.

We assume the transaction rate over time diagrams by Vondra are build from per–
transaction logging of pgbench. All transactions logged there are counted per second and
displayed in diagrams as rate per second. Let’s ask a question: When and where are the logs
written to disk? To what extent this IO action can affect the measurement itself?

We are not very confused about the fact that the transaction rate is sometimes near zero.
Our cumulative frequency diagrams, see for instance fig. 4, reveal that single transaction
residence times may be up to 10 s. As seen in fig. 32 this is observed for BTRFS and EXT4
as well, hence we are wondered that the jitter is not seen in the EXT4 examples. Again keep
in mind, that Vondra’s measurements are done on SSD that show much less scattering of
residence times as seen for NTFS in fig. 39. Transaction residence times of up to 0.5–1 s are
possible here too.

The behaviour of BTRFS on SSD should be investigated in more detail with the frequency
analysis of DSBENCH. Let’s risk an assumption: Vondra’s measurements on BTRFS are all
done with the mount option "ssd". We also have no idea what this option brings in detail,
but we assume that it reduces the number of single write accesses to the storage in order to
save lifetime. This means, if the system stores a larger block of data subsequent transaction
must wait a longer time.
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Vondra’s jitter we do not perceive as "inconsistent and unstable" but the observed per-
formance degeneration on Firebird as described in sec. 4.9.6. Therefore, we recommend to
avoid BTRFS if applying Firebird.

[Ber14]:
This paper compares file systems EXT4 and BTRFS with and without zlib compression. It
is focused on very large databases and motivated by a project which requires "storing about
6 TB of text data on a desktop computer with a couple cheap disk drives."

Benchmarks are done with pgbench up to scale = 20000 on a system having 32 GB RAM.
Some of the most important observations are:

• "In the general case EXT4 outperforms BTRFS for a TPC–B workload until a certain
scale is reached, at which point, BTRFS outperforms EXT4." This point is located
nearby file system cache size. Look at fig. 31, we find that point already at scale = 200.
But our transaction rate functions are investigated in much more detail in low scale
range too.

• "The results suggest a limited but real performance benefit to running PostgreSQL with
data tables on BTRFS over EXT4. A performance gain is realized when table and in-
dex sizes exceed available memory for disk cache and the system is under enough load
to make checkpoints challenging enough to constrain disk read operations for con-
tinued transaction processing. Benchmarks experienced an approximate 2× gain in
transactions per second for the system under test." Fig. 33 presents transaction rates
at our highest scale = 10000 for different file systems and depending on load which is
expressed by number of threads.

• For SELECT test on the 32 GB RAM system a cut–off between scale = 1000 and 2000
is found. This corresponds to our results at the 16 GB systems where the cut–off is
located at half size.

• "At scale = 5000 BTRFS with zlib compression is processing 45 % more SELECT state-
ments/second." Look at fig. 30 where BTRFS with compression can indeed process more
SELECT transactions between scale = 500 and 10000.

• The discussion among others considers the PostgreSQL configuration parameter check-
point_segments and the fsync behaviour of the file systems. Both are not evaluated
within the scope of our paper which is more focused on the question what a system is
able to perform as database server.

[Hay09]:
While looking for benchmarks on Firebird we only found an article of the Japanese Tsutomu
Hayashi. His result, DBBench, is a port of pgbench based on Delphi and Kylix as well and on
dbExpress for databases PostgreSQL, MySQL und Firebird. He presents measurements at
scale = 10, 50 and 100 (database size up to 1.5 GB9). Measurements are done on a reference
system (AMD PhenomTM, 4 GB RAM, SATA HDD 160 GB) using Firebird 2.1 and 2.5 in the
variants Superserver and Superclassic, MySQL 5.1 and PostgreSQL 8.4 on Windows and
Linux. On Linux he applied the file systems EXT3 and XFS.

The results are summarized without evaluating the details:

• Firebird on Linux using EXT3 is substantially slower than on Windows.

• If XFS is applied Firebird gives similar results on Linux as on Windows.
9The author specifies a database size of nearly 600 MB for Firebird and of nearly 1.2 GB for MySQL at scale = 100.
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• Hence, on Linux the Firebird performance strongly depends on the file system. We
observed similar differences if comparing EXT4 and BTRFS tests.

• "Firebird2.5 is very fast than other RDBMS."

Particularly, the last point we can not confirm with our measurements. But note that we
applied PostgreSQL in version 9 instead of 8. Furthermore, the database size at scale = 100
is still smaller than RAM, and it depends on the database configuration and on the general
utilization of the system if the file system cache may buffer the whole database for reading
queries. The following items make a comparison difficult:

• We do not have opportunity to analyse DBBench, it is available compiled for Windows
only.

• We have no measurements on MySQL.

• The presentation only contains simple comparisons of transaction rates without any
discussion about surroundings. There is no investigation of different database sizes
with respect to system properties like available RAM and no involvement with different
ACID strategies of the three different database systems, for instance that PostgreSQL
default strategy is READ COMMITTED, that of Firebird REPEATABLE READ.

• There is only one hardware.

• Very different environments: EXT3 and XFS we did not test. The influence of the
database driver dbExpress remains unknown.

5.4 Influence of System Stack

Question:
Which changes on the system stack do have impact on the performance?

The system stack is described in detail in sec. 3.2. Next, we assign the results of our
measurements to these levels of the system stack.

Core:
Sec. 5.1 among others distinguishes two ranges of the transaction rate function (core
determined SELECT and cut–off), which are mainly determined by the system core. In the
first range the total performance is enhanced by faster processors. The cut–off is shifted to
higher database sizes if more RAM is plugged.

Storage backend:
Our measurements in sec. 4.10.1 and 4.10.2 show substantial impact on transaction per-
formance on both database systems if the storage backend is exchanged. Using SSD instead
of HDD may result in enhancements of orders of magnitude as shown on different test sys-
tems. A laptop with SSD is able to outperform a high end server with hardware RAID. The
low access latencies of SSD compared to mechanical disks (0.1 ms compared to 8–18 ms, see
tab. 3) make this possible.

Another comparison of two computers of different generations but using the same hard
disk in sec. 4.10.3 demonstrates how the storage backend become a bottleneck. In this
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case the newer computer can not deliver higher transaction rates and DSI than the older
computer. Hence, it has no sense to invest more in CPU and RAM if the storage backend is
unable to store the data at suitable speed.

Operating system:
We run tests on Linux and Windows operating systems but on different machines. These
operating systems also apply different file system types. Therefore, comparing the RDBMS
performance depending on the operatng system is not possible from the data available so far.

File system:
There are many published benchmarks (see sec. 5.3) as well as many own tests (see sec. 4.9)
that investigate the influence of file systems on database performance. We could write a
book and it would not be enough to come up this comprehensive issue.

The choice of the file systems is a question which is relevant for Linux users only (Windows
is providing NTFS only). Our tests consider the examples EXT4 and BTRFS on bare metal10

only. Our recommendation regarding performance: As Firebird user take EXT4. PostgreSQL
can benefit from BTRFS if a very large and highly loaded database is required.

RDBMS:
In sec. 4.4 and 4.10 we compare results of both database systems, Firebird and PostgreSQL.
General statements like one is better than the other are less helpful without outlining the
frame. In low scale ranges PostgreSQL clearly dominates, but in high scale Firebird can
overcome (see fig. 14). As stated in sec. 4.8.2 the driver is substantially influencing the tests
which makes it difficult to isolate the pure RDBMS performance.

It is easier to compare different versions of the same RDBMS if the driver is kept constant.
But our testing ground only comprises a small range of different Firebird and PostgreSQL
versions, hence we are only able to compare some minor versions of PostgreSQL of the release
line 9.4 as presented in sec. 4.8.1. More comprehensive investigations are found, at least for
PostgreSQL in the internet, see [Von15a], "Performance since PostgreSQL 7.4 / pgbench":

• Medium size: SELECT only performance of PostgreSQL from 7.4 to 9.2 for clients >
10 enhanced more than an order of magnitude, scalability with the number of cores
substantially increased.

• Large size: SELECT only 2–4 times enhanced from PostgreSQL 7.4 to 9.2.

• From 9.2 to 9.4 very similar. Hence, we can discuss our results on 9.3 and 9.4 together,
if we are able to neglect the small differences as presented in sec. 4.8.1.

• SSD/HDD: Factor 4. Newer PostgreSQL versions benefit from SSD, less on HDD (large
size). We can confirm such and higher differences by showing an example done on
Windows, see sec. 4.10.1.

• "Older releases perform much better with more conservative settings (smaller
shared_buffers etc.), because that’s the context of their development."

The last statement is also confirmed by our tests: It is worth to tune the database for
its use case as we proved by comparing several PostgreSQL SELECT tests on different
shared_buffers configurations in sec. 4.7.2.

10The diversity of use cases is increasing once again if we include different types of images for virtual machines,
LVM and software RAID.
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Final remark: The TPC–B performance is far away to be a complete assessment about the
performance of a RDBMS. The test is designed as a throughput test that applies primitive
functions. Databases have much more features than simply selecting and updating rows.
Nevertheless, TPC–B tests are quite good to evaluate the system stack below the RDBMS
itself.

API:
To investigate the influence of the API we only can mention some differences between
pgbench und DSBENCH (see sec. 4.2). Otherwise, we did not change anything of the API.

Database driver:
The Python driver ordinarily used for PostgreSQL, psycopg2 in the versions 2.5 and 2.6, did
not make any trouble during DSBENCH development and tests. In no case we were induced
to look for and try alternatives. The disadvantage of this commendable state: We are unable
to make statements about the influence of different drivers on the PostgreSQL performance.

For Firebird the situation is different: We regularly encountered DSBENCH freezes during
transactions as can be seen in tab. 9. These failures were reproducible in the case of threads
> 1 and connections > 1. First versions of FDB of line 1.4 turned out to be more susceptible
to fail, hence we decided to run our tests mainly with firebirdsql version 0.9.5.

During our measurements which were extended over months several bugfix releases of
both drivers were published. Hence, we decided to repeat some tests under the same con-
ditions but with an updated driver, see sec. 4.8.2. The version 1.4.7 of FDB substantially
improves the SELECT performance with several threads. By using FDB version 1.4.11 we
could successfully finish the "reconnect" test that reproducible failed before.

Our tests on jarvis were started with the driver firebirdsql 0.9.12 until we realized that this
version failed to count the transaction roll backs due to collisions. We solved the problem by
switching to FDB 1.4.11.

Summarized: It is worth to follow the development of Python drivers for Firebird. New
versions do not contain bugfixes only, they also can affect the performance. DSBENCH

proved to be very helpful to test new driver versions.

Application:
Sec. 4.2 shows that using PSQL for transactions instead of sending single SQL requests can
increase the transaction rate. Applying this technique enables the Python program DSBENCH

to accomplish more transactions than the optimized C program pgbench. For one transaction
the client has to communicate the server only once instead of 5 times for all SQL commands.

Tab. 9 among others displays DSI values for "reconnect" tests where each transaction
opens and closes the connection to the database server. Lower transaction rates were
expected but we are surprised that the rates come down by orders of magnitude. This
means, if you design a database application you should squeamishly regard performance
losses due to connection negotiating.

5.5 Establishing DSBENCH as a new Benchmark Tool

Question:
What can we learn about the program DSBENCH itself from the preconditions, results and
discussion?
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Reliability, reproducibility of results
DSBENCH is not restricted to a single database size and not limited to only one measurement
cycle. It varies the database size and accomplishes several cycles to obtain an extensive
look to the system. Herewith, DSBENCH captures and evaluates CPU and storage backend
determined ranges as well.

DSBENCH considers variations of the transaction residence time of a few milliseconds up
to several seconds by measuring for long times and by cumulative frequency analysis. These
results are presented in several diagrams.

For a fast and reliable overall impression of a system under test DSBENCH is delivering a
performance index — DSI. For all measurements that cover the scale range at least from 1
to 1000 this DSI is presented. In sec. 4.8.1 the DSI proves to be a reliable indicator to find
even small performance changes visible in different PostgreSQL minor versions of the line
9.4. In sec. 4.10 we comprehend the exchange of the storage backends from HDD to SSD
with both RDBMS and obtain reproducible DSI results independent on the RDBMS. This
demonstrates, that you can use the DSI to rate a system under test as database server.

TPC–B compliance
Contrary to pgbench our DSBENCH application complies the technical specification of
TPC–B as accurate as possible (see sec. 2.2). This especially concerns the question of data
consistency which is automatically complied if transaction isolation level REPEATABLE
READ is selected.

Using PSQL
As presented in sec. 4.2 the usage of a single PSQL procedure call for the complete trans-
action instead of native SQL commands enhances the performance compared to pgbench
although DSBENCH is a Python program. The whole transaction is processed on the database
server. The client only needs to wait for finish of the transaction.

DSI instead of transaction rates
A single call of pgbench is not enough to assess a system under test. You only obtain a
transaction rate at one database size. Our DSI as a single number (see eqn. 12) evaluates
averaged transaction rates over a range of different database sizes including small databases
that can reside in file system cache completely as well as large databases that surpass the
memory size several times. Our measurements demonstrate that you can rate systems by
means of DSI without exploring the statistical analysis also delivered by DSBENCH (see for
instance sec. 4.10).

Frequency analysis instead of lump statistics
An essential result of our tests: Only a few long term transactions that take seconds
instead of some milliseconds strongly impact the global transaction rate (see sec. 4.1.4).
Characteristic values of statistics like median, average and standard deviation can not
reflect this behaviour well. Our tool DSBENCH acquires residence times of all transactions
as specified by TPC–B requirements. Contrary to that specification DSBENCH presents the
results graphically in inverse cumulative frequency distributions.

What are residence times containing?
Each residence time acquired by DSBENCH contains the duration of the transaction on the
database server, the time the API needs to create the transaction request, the time needed
by the Python driver to do the same and the time required by DSBENCH itself to trigger a
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transaction in its own test loop. The acquisition of all these fractions namely corresponds to
the TPC–B specification, but it is impossible to separate them and to evaluate, for instance,
the database server fraction only. As an example, look at sec. 5.4 and 4.8.2 where our
measurements on Firebird point to a substantial influence of the Python driver.

Relation between residence time and transaction rate
A transaction rate is mathematically determined from reciprocal of an averaged residence
time. But transaction rates calculated this way proved to be useless because they do not
consider that some transactions are processed parallel. How many transactions are parallel?
Is it determined by the number of DSBENCH nodes and threads or by the number of CPU
cores? The number of nodes and threads can substantially exceed the number of cores and
not all core may by utilized by the software as seen in sec. 4.4.1. This uncertainty compels
us to strictly separate the determination of transaction rates and the evaluation of residence
times. Transaction rates are calculated from the total number of transactions successfully
done during a measurement cycle, and the residence times are acquired directly for each
transaction. The only place where both results are joined is the confidence level diagram
(see sec. 4.1.5). For this the residence times are not converted directly to transaction rates
but using a scaling factor f which is derived from the transaction rate actually measured
and the averaged residence time (see eqn. 11).

System and load data acquisition
DSBENCH collects and stores system and load data. System data (installed versions of
RDBMS and drivers, file systems etc.) helps to recover test environments. Load data (CPU
and IO loads) are more useful than we expect to understand DSBENCH results (see for
instance file system compares in sec. 4.9.3).
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6 Conclusion

This conclusion section lists the most important issues like theses. At the end we ask some
questions and hope that any of you readers can help to answer them.

6.1 DSBENCH

• DSBENCH is able to test PostgreSQL and Firebird database servers with both SELECT
and standard TPC–B strategies.

• Transactions are implemented as PSQL database functions. This turned out to be a
performance gain compared to pgbench which realizes transactions as a set of primitive
SQL commands.

• A single DSBENCH run makes a comprehensive test by varying the database size, by ac-
quiring all transaction residence times as well as CPU and IO load data. It writes result
tables and diagrams that also contain a detailed residence time frequency distribution
analysis. Load data and statistics help to identify the influence of the system stack
layers to the overall performance. For quick comparison of plenty systems a single digit
(logarithmically scaled) performance index DSI is calculated from the transaction rate
function.

• DSBENCH can also disclose network related bottlenecks by simultaneously stress testing
a database server from many remote clients.

6.2 General

• Benchmark tools like dd, bonnie++ and postmark are not able to reproduce or explain
the results gathered with DSBENCH. In order to assess a system as a database server
the benchmark must be based on the RDBMS itself.

• Opening and closing a connection to a database server consumes so much time that
transaction rates will degrade by orders of magnitude. We recommend to keep connec-
tions open as long as possible.

• The feature of database systems that is called "prepare" is not really worth to apply
because DSBENCH already uses single procedure calls to fire transactions.

• The storage backend is a performance bottleneck even on small databases if it can
not persist transaction results produced by the system core fast enough. Database
applications that process lots of short time transactions requires an adequate storage
backend. Applying SSD instead of HDD improves the overall performance according to
DSI by 1–2 orders of magnitude.

• For large databases where RAM is not enough to cache most content the database
system become less important. The responsivity of the storage backend is the dominant
performance limiting issue. RAID can more than double the performance compared to
single disks. Again, SSD boosts the system performance by 1–2 orders of magnitude.

6.3 PostgreSQL

• The scaling behaviour of small size read/write database performance with the number
of concurrent clients not only depends on the core performance but also on the storage
backend responsivity.
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• For read mostly databases (for lots of web applications) buy as much RAM as you need
to cache the whole database. Reduce shared_buffers to give the operating system more
RAM for the file system cache. Use PSQL procedures and views to implement complex
database queries instead of sending lots of primitive SQL commands to reduce network
overhead. This will give you a cyberspeed database.

• Optimize the configuration parameters using pgtune. This is especially a good starting
point for databases with substantial write load.

• Applying REPEATABLE READ instead of READ COMMITTED helps to simplify database
applications. Try to avoid that transactions will collide by design in order to keep
performance.

• From performance point of view BTRFS is a good idea if you have a large database where
many concurrent clients are reading and writing. Avoid chattr +C and compression,
prefer 4 k leaf size instead 16 k. Also avoid BTRFS on single disks, use RAID instead.

6.4 Firebird

• Compared to PostgreSQL Firebird is more suitable for applications with lower number
of clients. Nevertheless, Firebird can also handle database sizes of more than 100 GB
with similar and sometimes higher transaction performance than PostgreSQL.

• Python drivers of Firebird are still unter development and not as rock solid as the
PostgreSQL driver psycopg2. It’s a good idea to check an upgrade from time to time to
increase performance and stability.

• Even on SELECT tests we observed write loads on the database file of at least 30 kb per
transaction. It is possible that the performance of reading a Firebird database can be
increased further by eliminating the reason of that write access.

• The next generation file system BTRFS is at moment no option for Firebird. The perfor-
mance is strongly reduced and unpredictable.

• Configure FileSystemCacheThreshold larger than DefaultDbCachePages to activate op-
erating system caching instead of database caching.

• If you need a fully featured but lightweight RDBMS on a workstation or laptop use
Firebird on SSD. This will boost even large databases (more than 100 GB) by more than
an order of magnitude compared to hard disk.

6.5 Questions

• An important point for further tests: Determining differences between EXT4 and BTRFS
on SSD.

• Why do the local SELECT tests on PostgreSQL on Linux servers not reach more than
50 % CPU load?

• Why do BTRFS generate 6 to 12 times more IO write load per transaction than EXT4?
Even chattr +C can not reduce the write load more than half.

• Why do BTRFS reduces the performance further in case of remote access but EXT4
not?
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• Why do Firebird generate write load while testing SELECT? Is this the reason for much
lower and bad scaling of the local SELECT transaction rate of Firebird compared to
PostgreSQL?

• How is it possible that the performance of Firebird on BTRFS becomes worse after
TPC–B testing the database system using several threads?

• Are the freezes of transactions on Firebird when testing with several threads and con-
nections related to a Python driver or to a Firebird intrinsic bug?
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